1. Show that $L \subseteq \mathcal{A}^*$ is \mathcal{NP}-hard [respectively, \mathcal{NP}^c-complete] if and only if $(\mathcal{A}^* \setminus L)$ is \mathcal{NP}^c-hard [\(\mathcal{NP}^c\)-complete].

2. [For those of you familiar with the Propositional Calculus.] Show that the problem of deciding if a sentence of the Propositional Calculus is satisfiable is \mathcal{NP}-complete and the problem of deciding if a sentence is a tautology is \mathcal{NP}^c-complete.

3. Show that the language
$$\{ \sigma @ \tau @^k \in \{0, 1, @\}^* \mid \sigma, \tau \in \{0, 1\}^* \text{and } \sigma \text{ codes a NDTM } M_{\sigma} \text{ which has an accepting computation on input } \tau \text{ of less than or equal to } k \text{ steps} \}$$
is \mathcal{NP}-complete.

4. Show that $2SAT \in \mathcal{P}$. [Harder than your average question.]

5. Find a language which is both \mathcal{NP}-hard and \mathcal{NP}^c-hard but not recursive.

6. Suppose $f, g : \mathbb{N} \to \mathbb{N}$ with g polynomial time computable, and there exists $n_0 \in \mathbb{N}$ such that $f(n) = g(n)$ for all $n > n_0$. Show that f is polynomial time computable.

7. Design a suitable coding system for finite graphs. [Read the solution to this one, even if you are sure you have a correct answer!]

8. Show that the following problem is \mathcal{NP}-complete:

Given a graph G and a natural number $k \in \mathbb{N}$, decide if G has a set C of k vertices such that every pair of distinct vertices in C are joined by an edge.

[A set C of vertices with the given property is called a clique, and this problem is known as CLIQUE. Hint: given a Boolean expression $\bigwedge_{i=1}^m \bigvee_{j=1}^{s_i} y_{ij}$, consider the graph with $\{ \langle j, i \rangle \mid i \leq m, j \leq s_i \}$ and $\{ \langle j, i \rangle, \langle j', i' \rangle \} \in E \iff i \neq i'$ and $(y_{ij} \land y_{i'j'})$ satisfiable.]
9. Let NODECOVER be the problem:

Given a graph G and a natural number $r \in \mathbb{N}$, decide if there is a set N of r vertices in G such that every edge of G has at least one end in N.

Show that NODECOVER is \mathcal{NP}-complete by showing that

$$\text{CLIQUE} \leq_{p} \text{NODECOVER}.$$

10. Show that a language $L \subseteq A^{*}$ is in \mathcal{NP} if and only if there exists an alphabet B, a function $f : L \rightarrow B^{*}$ with polynomial length expansion (i.e. $|f(\sigma)| \leq p(|\sigma|)$ for some polynomial $p(x)$), and a TM N which runs in polynomial time and

- accepts all words $\sigma@f(\sigma)$ with $\sigma \in L$; and
- rejects all words $\sigma@\tau$ with $\sigma \notin L$.

Here, of course, @ is a new symbol assumed not to be in A or B.

[Read the solution for some more remarks on why this fact is important.]

11. Show that if $X \in \mathcal{P}$ then $\mathcal{P}^{X} = \mathcal{P}$.

12. Show that if X is \mathcal{NP}-complete then $\mathcal{NP}^{c} \subseteq \mathcal{P}^{X}$.

13. Let M be an oracle TM and $f : \mathbb{N} \rightarrow \mathbb{N}$ a time constructible function. Show that there is a (multitape) oracle TM N such that N^{Y} runs in time $f(n)$ for all oracles Y, and N^{Y} accepts a word σ exactly if M^{Y} accepts σ in $< f(|\sigma|)$ steps.

14. Describe an oracle TM M and three languages X, Y and Z such that M^{X} runs in quadratic time, M^{Y} always halts but not in polynomial time, and M^{Z} never halts.

15. Let K be a language. Find a language which is not accepted by M^{K} for any oracle TM M with oracle K.

16. Show that every PSpace-hard language is \mathcal{NP}-hard, and that the converse would imply $\mathcal{NP} = \text{PSpace}$. [Here, of course, a language X is PSpace-hard if $L \leq_{p} X$ for every L in PSpace.]

17. Show that $\text{PSPACE} = \text{NPSPACE} = \text{PSPACE}^{c}$.