Real Algebraic and Analytic Geometry

Preprint Server

Previous   Next
96. Didier D'Acunto, Vincent Grandjean:
On gradient at infinity of real polynomials.

e-mail: ,

Submission: 2004, February 26.

Let $f:\mathbb{R}^n\to\mathbb{R}$ be a polynomial function. We discuss on different conditions to trivialise the graph of $f$ by its level sets in the neighbourhood of a critical value at infinity via the gradient field of $f$. We also exhibit a \L ojasiewicz type inequality which is useful to the present study. When $n=2$, we are able to relate this \L ojasiewicz type inquality with generic polar curves.

Mathematics Subject Classification (2000): 32Bxx, 34Cxx, 32Sxx, 14P10.

Keywords and Phrases: gradient trajectories, polynomials.

Full text, 21p.: ps.gz 229k, pdf 296k.

Server Home Page