A probabilistic approach to spectral analysis of growth-fragmentation equations

Alex Watson (University of Manchester)

Frank Adams 2,

The growth-fragmentation equation describes a system of growing and dividing particles, and arises in models of cell division, protein polymerisation and even telecommunications protocols. Several important questions about the equation concern the asymptotic behaviour of solutions at large times: at what rate do they converge to zero or infinity, and what does the asymptotic profile of the solutions look like? Does the rescaled solution converge to its asymptotic profile at an exponential speed? These questions have traditionally been studied using analytic techniques such as entropy methods or splitting of operators. In this talk, I discuss a probabilistic approach to the study of this asymptotic behaviour. The method is based on the Feynman-Kac formula and the identification of a driving Markov process.

This is joint work with Jean Bertoin.

Import this event to your Outlook calendar
▲ Up to the top