Stochastic Modelling of Genetic Interaction in Budding Yeast

Darren Wilkinson (Newcastle University)

Zochonis Theatre A,

Saccharomyces cerevisiae (often known as budding yeast, or brewers yeast) is a single-celled micro-organism that is easy to grow and genetically manipulate. As it has a cellular organisation that has much in common with the cells of humans, it is often used as a model organism for studying genetics. High-throughput robotic genetic technologies can be used to study the fitness of many thousands of genetic mutant strains of yeast, and the resulting data can be used to identify novel genetic interactions relevant to a target area of biology. The processed data consists of tens of thousands of growth curves with a complex hierarchical structure requiring sophisticated statistical modelling of genetic independence, genetic interaction (epistasis), and variation at multiple levels of the hierarchy. Starting from simple stochastic differential equation (SDE) modelling of individual growth curves, a Bayesian hierarchical model can be built with variable selection indicators for inferring genetic interaction. The methods will be applied to data from experiments designed to highlight genetic interactions relevant to telomere biology.  

This is joint work with Jonathan Heydari, Conor Lawless and David Lydall.  

Import this event to your Outlook calendar
▲ Up to the top