Competing instabilities of three-dimensional boundary-layer flow over spinning bodies

Dr Zahir Hussain (Manchester Metropolitan University)

Blackett Lecture Theatre, Schuster Building (Physics),

In this study, a new solution is applied to the problem of boundary-layer flow over a rotating cone in still fluid. The mean flow field is perturbed leading to disturbance equations that are solved via a spectral numerical method involving Chebyshev polynomials, both of which are compared with previous numerical and analytical approaches. Importantly, the approach yields favourable comparison with existing experiments in the literature. Meanwhile, further details will be provided of potential comparisons with new experiments currently in the pipeline.

Physically, the problem represents airflow over rotating machinery components at the leading edge of a turbofan. In such applications, laminar-turbulent transition within the boundary layer can lead to significant increases in drag, resulting in negative implications for fuel efficiency, energy consumption and noise generation. Consequently, delaying transition to turbulent
flow is seen as beneficial, and controlling the primary instability may be one route to achieving this. Ultimately, control of the input parameters may lead to future design modifications and potential cost savings.

Our results are discussed in terms of existing experimental data and previous stability analyses on related bodies. Importantly, broad-angled rotating cones are susceptible to a crossflow instability visualised in terms of co-rotating spiral vortices, whereas slender rotating cones have transition characteristics governed by a centrifugal instability, which is visualised by the appearance of counter-rotating Görtler vortices. We investigate both parameter regimes and comment on the accuracy of the new solution method, when compared with previous approaches.

Import this event to your Outlook calendar
▲ Up to the top