Math34011 : Examples 8 : Chapter 5

Q1. Use the method of multiple scales to obtain a uniformly convergent asymptotic expansion for the solution to the first order, of

1. \(\ddot{x} + \epsilon \left(\frac{1}{3} \dot{x}^3 - \dot{x} \right) + x = 0 \)

2. \(\ddot{x} + \epsilon (x^4 - 1) \dot{x} + x = 0 \)

[Hint: you are given the solution of \(\frac{dx}{dy} = \frac{1}{2} x \left(1 - \frac{1}{8} x^4 \right) \) is \(x = \frac{2}{(2 + 16 k e^{-2y})^{1/4}} \)]

3. \(\ddot{x} + \epsilon \dot{x}^3 + x = 0 \).

Q2. Use the method of multiple scales to obtain a uniform first order solution to Examples 7 Q1 parts 1 and 2. Compare your two answers and comment.

Q3. The orbital equation of a planet about the sun is

\[\frac{d^2u}{d\theta^2} + u = k \left(1 + \epsilon u^2 \right), \]

where \(u = 1/r \) and \((r, \theta) \) are polar coordinates, \(k \) is a constant and \(\epsilon << 1 \) represents a relativistic correction to Newton’s theory.

Use the method of multiple scales to solve this to first order in \(\epsilon \), with the initial condition \(u = k(1 + e), \dot{u} = 0 \) at \(\theta = 0 \). Here, \(e \) is the eccentricity. Show that

\[u_0 = k r \cos \left[\theta \left(1 - \epsilon k^2 \right) \right] + k \]

and deduce that the orbit processes by \(2\pi \epsilon k^2 \) in each year.

This is an observable effect. The procession of the planet Mercury was one of the crucial tests of Einstein’s theory of general relativity.