Week 19

1. Solve the following linear ODEs by finding an integrating factor:
 (a) \(\frac{dy}{dx} + y = \exp(-x) ; \ y = 2 \text{ when } x = 0. \)
 (b) \(\frac{dy}{dx} + y \cos x = \cos x ; \ y = 1 \text{ when } x = 0. \)
 (c) \(\frac{dy}{dx} + \frac{y}{x} = \sin x ; \ y = 0 \text{ when } x = 0. \) (Changed – it was \(y = 1 \) but that did not work!)

2. Let \(C \) be concentration of dissolved Oxygen in bioreactor and \(C_s \) concentration of dissolved Oxygen at saturation, and \(D = C_s - C \) the ‘deficit’. Let \(L \) be the constant Biological Oxygen Demand of organisms in the reactor. The following differential equation is given as a model
 \[\frac{dD}{dt} = k_d L - k_r D \]
 where \(k_d \) and \(k_r \) are constants and \(t \) is time.
 (a) What does this equation mean?
 (b) Solve the differential equation, assuming \(D = D_0 \) at \(t = 0 \)
 (c) What shape is this curve?