You are here: Mathematics > undergraduate > undergraduate studies > course units > level 4 units > MATH43051
School of Mathematics

# MATH43051 - 2008/2009

General Information
• Title: Model Theory
• Unit code: MATH43052
• Credits: 15
• Prerequisites: MATH43001 Predicate Calculus.
• Co-requisite units: None
• School responsible: Mathematics
• Members of staff responsible: Prof. A. Wilkie
Page Contents
Other Resources
• Course materials from the lecturer.

## Specification

### Aims

• To present the basic notions and results of model theory.
• To illustrate these in a variety of kinds of examples.
• To show some applications of realising types in elementary extensions.

### Brief Description of the unit

Model theory deals with those properties of mathematical structures which can be expressed using formulae of the predicate calculus. One theme is the investigation of the class of those structures which are the models of a set of sentences from predicate calculus. Another theme is the analysis of definability in individual structures and the use of elementary extensions to produce non-standard elements (such as infinitesimals in extensions of the set of real numbers).

### Learning Outcomes

On successful completion of this course unit students will be able to

• understand the relation between structure and syntax, definable sets and types, in the context of predicate logic;
• be able to analyse examples from a model-theoretic perspective;
• understand the fundamental results on the class of models of a theory in predicate logic;
• be able to use the technique of realising types.

None.

### Syllabus

1. Review of predicate logic: languages, structures; satisfaction relation; examples. [4 lectures]
2. Elementary equivalence: elementary substructures; elementary chains; Lowenheim-Skolem theorems; diagrams. [8]
3. Model completeness: elimination of quantifiers; examples. [4]
4. Automorphisms and types: definable sets; the space of types; algebraicity and definability; realising types. [8]
5. Categoricity: aleph null-categoricity. [6]

### Teaching and learning methods

Three lectures each week with some time used for discussion of exercises.

### Assessment

Mid-semester coursework: two take home tests weighting 20%
End of semester examination: two and a half hours weighting 80%

## Arrangements

Course materials from the lecturer.