MATH3013 Coding TheoryThis is the former 355/MA3013 SEMESTER: First CONTACT: Dr Alexandre Odeskii (Newman 1.32) CREDIT RATING: 10
 Aims: To introduce students to a subject of convincing practical relevance that relies heavily on results and techniques from Pure Mathematics. Intended Learning Outcomes: On successful completion of the course students will: Have a theoretical understanding of how methods of linear and polynomial algebra are applied in design of error correcting codes, And be able to analyse and compare error detecting/correcting facilities of simple linear and cyclic codes for the symmetric binary channel. Design simple cyclic codes with given properties. Pre-requisites: 152, 212, 252 (ex-UMIST), MT2262 (ex-VUM) Dependent Courses: None Course Description: Coding theory plays a crucial role in the transmission of information. Due to the effect of noise and interference, the received message may differ somewhat from the original message which is transmitted. The main goal of Coding Theory is the study of techniques which permit the detection of errors and which, if necessary, provide methods to reconstruct the original message. The subject involves some elegant algebra and has become an important tool in banking and commerce. Teaching Mode: 2 Lectures per week 1 Tutorial per week Private Study: 5 hours per week Recommended Texts: R Hill, A First Course in Coding Theory, 1986, OUP. Assessment Methods: Coursework: 20% Coursework Mode: Problem sheets handed out in Weeks 5 and 10.  Deadlines in Weeks 7 and 11. Examination: 80% Examination is of 2 hours duration at the end of the Second Semester.
 No of lectures: Syllabus 1 Introduction to the Main Problem of Coding Theory. 2 Hamming Distance. Code detection. Code correction. ISBN code. 3 Length and weight of a code. Perfect codes. 4 Linear codes. Generator matrices and standard forms. Encoding. Nearest neighbour decoding. 4 Dual code. Parity check matrix. Syndrome decoding. Incomplete decoding. 4 Hamming Codes and Decoding. 4 Finite fields. Cyclic codes.

Last revised August, 2006