Blocked Algorithms for the Matrix Square Root

Edvin Deadman ¹ Nick Higham ² Rui Ralha ³

¹ University of Manchester / Numerical Algorithms Group
² University of Manchester
³ University of Minho, Portugal

May 18, 2012
Outline

1. Numerical Libraries and NAG
2. The Matrix Square Root:
 - Definition and Uses
 - The Schur Method
 - Blocking
 - Parallelism
Why use numerical libraries?

- Numerical computation is difficult to do accurately.
- Writing routines from scratch is time consuming.
- Commonly encountered problems:
 - Overflow/underflow: how does the computer deal with large / small numbers?
 - Condition: how sensitive is the solution to small changes in the input?
 - Stability: how sensitive is the computation to rounding errors?
- Important considerations:
 - Error analysis.
 - Information about error bounds.
 - Parallelism.
How a numerical library is used

![Diagram showing the layers of numerical libraries: Hardware, Core Math Libraries, NAG Libraries, and Your application. Compilers etc are on the right side.](image-url)
The NAG Library

- Root Finding
- Summation of Series
- Quadrature
- Ordinary Differential Equations
- Partial Differential Equations
- Numerical Differentiation
- Integral Equations
- Mesh Generation
- Interpolation
- Curve and Surface Fitting
- Optimization
- Approximations of Special Functions

- Dense Linear Algebra
- Sparse Linear Algebra
- Correlation & Regression Analysis
- Multivariate Methods
- Analysis of Variance
- Random Number Generators
- Univariate Estimation
- Nonparametric Statistics
- Smoothing in Statistics
- Contingency Table Analysis
- Survival Analysis
- Time Series Analysis
- Operations Research
A square root of A is a solution of $X^2 = A$.

There can be infinitely many square roots. They are never unique:

\[
\begin{pmatrix}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

If A has m Jordan blocks and $s \leq m$ distinct eigenvalues, then there are 2^s square roots that are primary functions of A.

If A has no eigenvalues on the negative real line, then there is a unique principal square root $A^{1/2}$ with eigenvalues in the right half plane.
A square root of A is a solution of $X^2 = A$.

There can be infinitely many square roots. They are never unique:

$$
\begin{pmatrix}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{pmatrix}^2 =
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}.
$$
Defining the Matrix Square Root

- A square root of A is a solution of $X^2 = A$.
- There can be infinitely many square roots. They are never unique:
 \[
 \begin{pmatrix}
 \cos \theta & \sin \theta \\
 \sin \theta & -\cos \theta
 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
 \]
- If A has m Jordan blocks and $s \leq m$ distinct eigenvalues then there are 2^s square roots that are primary functions of A.

Edvin Deadman, Nick Higham, Rui Ralha, University of Manchester / Numerical Algorithms Group, University of Manchester, University of Minho, Portugal

Blocked Algorithms for the Matrix Square Root
Defining the Matrix Square Root

- A square root of A is a solution of $X^2 = A$.
- There can be infinitely many square roots. They are never unique:
 \[
 \begin{pmatrix}
 \cos \theta & \sin \theta \\
 \sin \theta & -\cos \theta
 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
 \]
- If A has m Jordan blocks and $s \leq m$ distinct eigenvalues then there are 2^s square roots that are primary functions of A.
- If A has no eigenvalues on the negative real line, then there is a unique principal square root $A^{1/2}$ with eigenvalues in the right half plane.
Defining the Matrix Square Root: Example

\[A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \]
Defining the Matrix Square Root: Example

\[A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \]

Four primary square roots:

\[\begin{pmatrix} 1 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{2} & \frac{1}{2\sqrt{2}} \\ 0 & 0 & 0 & \sqrt{2} \end{pmatrix}, \quad \begin{pmatrix} -1 & -\frac{1}{2} & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -\sqrt{2} & -\frac{1}{2\sqrt{2}} \\ 0 & 0 & 0 & -\sqrt{2} \end{pmatrix}, \quad \begin{pmatrix} 1 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\sqrt{2} & -\frac{1}{2\sqrt{2}} \\ 0 & 0 & 0 & -\sqrt{2} \end{pmatrix}, \quad \begin{pmatrix} -1 & -\frac{1}{2} & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \sqrt{2} & \frac{1}{2\sqrt{2}} \\ 0 & 0 & 0 & \sqrt{2} \end{pmatrix}. \]
Defining the Matrix Square Root: Example

\[A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \]

Four primary square roots:

\[\begin{pmatrix} 1 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{2} & \frac{1}{2\sqrt{2}} \\ 0 & 0 & 0 & \sqrt{2} \end{pmatrix}, \quad \begin{pmatrix} -1 & -\frac{1}{2} & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -\sqrt{2} & -\frac{1}{2\sqrt{2}} \\ 0 & 0 & 0 & -\sqrt{2} \end{pmatrix}, \quad \begin{pmatrix} 1 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\sqrt{2} & -\frac{1}{2\sqrt{2}} \\ 0 & 0 & 0 & -\sqrt{2} \end{pmatrix}, \quad \begin{pmatrix} -1 & -\frac{1}{2} & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \sqrt{2} & \frac{1}{2\sqrt{2}} \\ 0 & 0 & 0 & \sqrt{2} \end{pmatrix}. \]
Markov models of finance and population dynamics:
- If $P(t)$ is the transition matrix for a time step t, then \sqrt{P} could be used for $\frac{t}{2}$.
Markov models of finance and population dynamics:
- If $P(t)$ is the transition matrix for a time step t, then \sqrt{P} could be used for $\frac{t}{2}$.

Solution of differential equations:
- $\ddot{y} + Ay = 0$ has solution $y = \cos(\sqrt{A}t)y_0 + \sin(\sqrt{A}t)y_1$.
Uses of the Matrix Square Root

- Markov models of finance and population dynamics:
 - If $P(t)$ is the transition matrix for a time step t, then \sqrt{P} could be used for $\frac{t}{2}$.

- Solution of differential equations:
 - $\ddot{y} + Ay = 0$ has solution $y = \cos(\sqrt{A}t)y_0 + \sin(\sqrt{A}t)y_1$.

- Polar decomposition / matrix sign decomposition.
Markov models of finance and population dynamics:
- If $P(t)$ is the transition matrix for a time step t, then \sqrt{P} could be used for $\frac{t}{2}$.

Solution of differential equations:
- $\ddot{y} + Ay = 0$ has solution $y = \cos(\sqrt{A}t)y_0 + \sin(\sqrt{A}t)y_1$.

Polar decomposition / matrix sign decomposition.

Important kernel routine for computing matrix logarithm, pth roots and powers and trigonometric matrix functions.
The Schur Method

1. Compute a Schur decomposition: \(A = QTQ^* \) with \(T \) upper triangular.

2. Expand \(U^2 = T \) elementwise. For a primary square root, \(U \) is also upper triangular:

\[
U_{ii}^2 = T_{ii},
\]

\[
U_{ii}U_{ij} + U_{ij}U_{jj} = T_{ij} - \sum_{k=i+1}^{j-1} U_{ik}U_{kj}.
\]

\(U \) is found either a column or a superdiagonal at a time.

3. \(\sqrt{A} = QUQ^* \)
The Schur Method: Properties

- Cost: $28\frac{1}{3} n^3$ flops.
- Real arithmetic version uses quasi upper triangular Schur decomposition and 2×2 diagonal block structure.
- Computed square root of the triangular matrix \hat{U} satisfies $\hat{U}^2 = T + \Delta T$, where
 \[|\Delta T| \leq \tilde{\gamma}_n |\hat{U}|^2 \]
 (this only holds normwise in the real arithmetic version).
The Schur Method: Properties

- Cost: $28\frac{1}{3} n^3$ flops.
- Real arithmetic version uses quasi upper triangular Schur decomposition and 2×2 diagonal block structure.
- Computed square root of the triangular matrix \hat{U} satisfies $\hat{U}^2 = T + \Delta T$, where

 $$|\Delta T| \leq \tilde{\gamma}_n |\hat{U}|^2$$

 (this only holds normwise in the real arithmetic version).
- No use of level 3 BLAS - slow!
- Now focus on the triangular phase of the algorithm.
Run times for random complex triangular matrices
The Blocked Schur Method

- The U_{ij} and T_{ij} are now taken to be blocks:

\[
U_{ii}^2 = T_{ii}, \tag{1}
\]

\[
U_{ii}U_{ij} + U_{ij}U_{jj} = T_{ij} - \sum_{k=i+1}^{j-1} U_{ik}U_{kj}. \tag{2}
\]

- Solve (1) using the point method and (2) by solving the Sylvester equation (e.g. xTRSYL in LAPACK).
The Blocked Schur Method

- The U_{ij} and T_{ij} are now taken to be blocks:

\[U_{ii}^2 = T_{ii}, \quad (1) \]

\[U_{ii}U_{ij} + U_{ij}U_{jj} = T_{ij} - \sum_{k=i+1}^{j-1} U_{ik}U_{kj}. \quad (2) \]

- Solve (1) using the point method and (2) by solving the Sylvester equation (e.g. xTRSYL in LAPACK).
- Same error bounds hold true.
- Over 90% of run time spent in GEMM calls and 8% in Sylvester equation solution.
- Not very sensitive to block size or choice of kernel routines.
Run times for random complex triangular matrices

Edvin Deadman, Nick Higham, Rui Ralha, University of Manchester / Numerical Algorithms Group, University of Manchester, University of Minho, Portugal

Blocked Algorithms for the Matrix Square Root 14/29
Recursive solution of the triangular phase:

\[
\begin{pmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{pmatrix}^2 = \begin{pmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{pmatrix}.
\]

\(U_{11}^2 = T_{11}\) and \(U_{22}^2 = T_{22}\) are solved recursively.

Solve \(U_{11} U_{12} + U_{12} U_{22} = T_{12}\) using the recursive method of Jonsson & Kågström.

‘Point’ algorithms are used when the recursion has reached a certain size (e.g. \(n = 64\)).

Same error bound holds as point algorithm (proof by induction).
Run times for random complex triangular matrices

Edvin Deadman, Nick Higham, Rui Ralha, University of Manchester / Numerical Algorithms Group, University of Manchester, University of Minho, Portugal

Blocked Algorithms for the Matrix Square Root
Aside: multiplying two triangular matrices
Full complex matrices (called from MATLAB)

Edvin Deadman, Nick Higham, Rui Ralha, University of Manchester / Numerical Algorithms Group, University of Manchester, University of Minho, Portugal

Blocked Algorithms for the Matrix Square Root 18/29
Full real matrices (called from MATLAB)
Parallelism

Which approach is best in parallel?
Parallelism

Which approach is best in parallel?

Options for parallelism:
- Threaded BLAS.
- Explicit loop-based parallelism of the triangular phase.
- OpenMP tasks.
Parallel Point and Block Methods

Blocks below and left of \((i, j)\) block must be computed first:
Synchronisation required after each superdiagonal:
Parallel Point and Block Methods

Synchronisation required after each superdiagonal:
Parallel Point and Block Methods

Synchronisation required after each superdiagonal:
Parallel Point and Block Methods

Synchronisation required after each superdiagonal:
Recursive Blocking in Parallel

Task based approach - each recursive call generates new tasks. Synchronization points required:
Recursive Blocking in Parallel

Task based approach - each recursive call generates new tasks. Synchronization points required:
Recursive Blocking in Parallel

Task based approach - each recursive call generates new tasks. Synchronization points required:
Recursive Blocking in Parallel

Task based approach - each recursive call generates new tasks. Synchronization points required:
Recursive Blocking in Parallel

Task based approach - each recursive call generates new tasks. Synchronization points required:
Parallel Results for 4000×4000 Triangular Matrices

Edvin Deadman, Nick Higham, Rui Ralha, University of Manchester / Numerical Algorithms Group, University of Manchester, University of Minho, Portugal

Blocked Algorithms for the Matrix Square Root
Parallel Results for 4000×4000 Full Matrices
Implementation for the NAG Library

- Key: robustness and error handling.
Key: robustness and error handling.

Extension to singular matrices:
- Eigenvalue considered to vanish if $\lambda < \epsilon \|A\|$
- Reorder and check if the vanishing eigenvalue is semisimple.
Key: robustness and error handling.

Extension to singular matrices:
- Eigenvalue considered to vanish if \(\lambda < \epsilon \|A\| \)
- Reorder and check if the vanishing eigenvalue is semisimple.

Negative eigenvalues:
- Eigenvalue considered to lie on \(\mathbb{R}^- \) if \(\text{Re}(\lambda) < 0 \) and \(|\text{Im}(\lambda)| < \epsilon |\text{Re}(\lambda)| \).
- A non-principal square root can be returned in this case.
Key: robustness and error handling.

Extension to singular matrices:
- Eigenvalue considered to vanish if $\lambda < \epsilon \|A\|$.
- Reorder and check if the vanishing eigenvalue is semisimple.

Negative eigenvalues:
- Eigenvalue considered to lie on \mathbb{R}^- if $Re(\lambda) < 0$ and $|Im(\lambda)| < \epsilon |Re(\lambda)|$.
- A non-principal square root can be returned in this case.

Condition estimation:
- Condition number estimates and residual bounds are available for the matrix square root.
- Condition number is expensive to compute.
Implementation for the NAG Library

- Real and complex routines, with or without condition estimation, and extra routines specifically for triangular matrices.
- Test programs:
 - Check the residual $(\sqrt{A})^2 - A$ against the theoretical residual bound.
 - Test against computation in VPA using condition estimate.
 - Tricky test cases e.g. almost singular matrices, nearly negative eigenvalues.
 - Error exits and illegal inputs.
Recursive blocking can be fast, when the algorithm allows.
NAG implementation uses OpenMP, so will use standard blocking.
Matrix square root is a key computational kernel - BLAS?
The fastest method in serial is not necessarily the fastest method in parallel.
References

