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Abstract—For describing the autoregulation of the blood flow in an artery under constant transmural
pressure a mathematical model that takes into account the multilayer structure of the arterial wall, the
diffusion and kinetic processes in the wall, and the nonlinear viscoelastic properties of the wall material
is proposed. The limiting case of a thin-walled artery is studied analytically. The arterial-wall viscosity
range on which the equilibrium state of the system is stable is estimated. Accurate stationary distribu-
tions of the nitric oxide, calcium and myosin concentrations in the arterial wall are found. Numerical
simulation of the autoregulation process demonstrated the possibility of arterial adaptation to radius
perturbations, the existence of slow oscillations, and system transition to a new equilibrium state with
change in blood flow level. The results are in good agreement with the experimental data.
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A common approach to modeling the vascular system is to extend the classical hydrodynamic models of
liquid flow through elastic tubes to the case of blood flow through arteries [1–3]. However, in some cases,
for example, for resistive muscular arteries, it is necessary to take into account differences between the usual
passive and the “biological” active tube [4].

The walls of arteries and arterioles contain smooth muscles which can contract or relax in response to
nerve impulses and various factors of a mechanical or chemical nature, thereby regulating the vessel lumen
and the blood pressure and flow-rate. There are two main mechanisms of local autoregulation. The first
is the muscular tonus of the arterial wall due to the shear stress on its inner surface [5–8]. The second
mechanism, which is determined by the sensitivity of the smooth-muscle tissue to the modification of the
tensile stress by the blood pressure, is known as the Bayliss effect, or myogenic response [9, 10]. Moreover,
there is a regulatory mechanism realized by means of the vegetative nervous system via the vessel-wall
baroreceptors, which are sensitive to the transmural pressure [11].

Let the transmural blood pressure P0 be maintained constant and the blood flow vary (see, for example,
experimental investigation [5]). Then the first of the above-mentioned effects related with the shear stress
plays the leading role.

In this study we will consider the effect of the shear stress on the blood vessel dilatation involving nitric
oxide (NO), taking into account its diffusion and absorption, as well as biochemical reactions in the vessel
wall [12, 13].

It was long assumed that the endothelial cells lining the inner surface of the arterial bed only isolated the
blood from the wall tissues and reduced flow friction. However, in 1980 Robert F. Furchgott and coworkers
showed [14, 15] that the endothelial cell layer plays a key part in the relaxation of the smooth muscles
in the artery. Thus, an endothelium-dependent factor in vessel muscle-tissue relaxation was discovered.
Following further investigation, the nitric oxide molecule was proposed as a signal molecule that connects
the endothelium and the smooth muscles in the artery wall. The endothelium-dependent mechanism of
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NUMERICAL SIMULATION OF THE PROCESS OF AUTOREGULATION 33

Fig. 1. Diagram of the autoregulation process related with the shear stress and the diffusion-kinetic processes in the en-
dothelial cells (e) and the intima (i) and media (m) layers: NOS is NO production catalyst, L-Arg is L-arginine, GC is
cGMP production catalyst, GTP is guanosine-triphosphate, cGMP is cyclic guanosine-monophosphate, AMC is actin-
myosin complex.

muscular-tissue relaxation also made it possible to understand the operating principle of the emergency
preparation nitroglycerine previously used without its role being completely understood.

The mechanical nature of the regulation of the muscular tonus of the arterial wall was discussed in [7, 16–
19]. It was shown that an increase in the shear stress between the blood flow and the inner arterial surface
leads to the relaxation of the smooth muscle layer in the arterial wall. This is followed by an increase in the
artery radius and a decrease in the shear stress; therefore, the entire process is characterized by the presence
of feedback.

In the arterial wall three main layers can be distinguished. The first, inner, layer or intima (i), the middle
layer or media (m), and the outer layer or adventitia (a). The inner surface of the i-layer is lined with
endothelial cells. The m-layer contains many smooth muscle cells. The layer thicknesses depend on the
type of artery or arteriole. In what follows we will consider resistive arteries with a developed muscular
layer in m and a non-negligibly thin i-layer. The typical intima to media thickness ratio is of the order of
10−1.

The scenario of the effect of a change in the vessel wall shear stress on the vessel muscle relaxation is as
follows. An increase in the shear stress τsh on the surface of the endothelial cells opens the calcium channels,
which leads to an increase in nitric oxide (NO) synthesis from L-arginine catalyzed by NO-synthase. Nitric
oxide then diffuses with absorption across the intima layer to the smooth muscle cells in the m-layer. Being
a lipophilic molecule, NO easily penetrates the membranes of the smooth muscle cells and initiates the
synthesis of cyclic guanosine monophosphate. The latter stimulates the outflow of intracellular calcium ions
(Ca2+), which reduces the concentration of the contracting actin-myosin complexes and hence leads to the
relaxation of the smooth muscle cells. The flow-dependent vessel constriction follows a similar course. A
diagram of the autoregulation process is shown in Fig. 1.

The arterial wall has one more property that distinguishes it from an ordinary elastic tube: this is its
viscoelasticity, which is needed for its damping function, that is, for smoothing the pressure waves, and
which makes a significant contribution to the artery’s behavior [20, 21].

The purpose of our study is to formulate and investigate a novel mathematical model for describing the
local autoregulation of the blood flow with account for the viscoelastic behavior of the arterial wall and
those two-layer diffusion and kinetic processes in which the concentrations of the key agents: nitric oxide
(NO), calcium ions (Ca2+), and phosphorylated myosin, are involved.
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34 KUDRYASHOV, CHERNYAVSKII

1. MAIN ASSUMPTIONS OF THE MODEL

We will consider an axially symmetric and viscoelastic artery. We assume the blood to be an incompress-
ible and viscous fluid, the flow quasi-stationary, and the transmural pressure P0 (difference of the pressures
acting on the vessel wall) constant. For the radial profile of the axial velocity a power generalization of the
Poiseuille law is used. A linear dependence of the muscular force on the phosphorylated myosin concentra-
tion in the smooth muscle cell is assumed. The rate of NO production in the endothelial layer on the inner
surface of the arterial wall is assumed to be proportional to the shear stress.

2. FORMULATION OF THE PROBLEM

Let us consider an artery segment of length l with cross-sectional area A and wall thickness h in the
cylindrical coordinate system (r, θ , x ≡ z). The intima, media and adventitia layers have the coordinates Ri,
Rm, and Ra, respectively.

1. Dependence of the shear stress on the blood flow-rate. Let the velocity profile have the form [3]:

Vx(r, x, t) =
s + 2

s

[
1 −

(
r

R(t)

)s]
u(x, t). (2.1)

Here, Vx is the axial flow velocity component, u is the axial velocity component averaged over the cross-
section, R is the inside radius of the artery, and s is the steepness of the velocity profile. The case s = 2
corresponds to the parabolic velocity profile describing laminar Newtonian fluid flow along a rigid cylindri-
cal tube.

In the case of a fluid with the dynamic viscosity μ in the boundary layer the shear stress on the tube wall
can be expressed by the formula

τsh = −μ
[

∂Vx

∂ r

]
r=R

= (s + 2)μ
u
R

= (s + 2)μ
Q

πR3 , (2.2)

where Q = Au is the blood volume flow-rate through a cross-section of area A.
Taking into account (2.1) and (2.2) and averaging the fluid mass and momentum conservation equations

over the cross-section, we obtain

∂A
∂ t

+
∂Q
∂x

= 0, (2.3)

∂Q
∂ t

+
∂
∂x

(
α0

Q2

A

)
+

A
ρ

∂P
∂x

= −2πν(s + 2)
Q
A

, (2.4)

where α0 = (s + 2)/(s + 1) is a correcting multiplier for the momentum [3] for the given velocity profile
(2.1).

Assuming that a quasi-stationary laminar flow is realized, we can reduce the system (2.3), (2.4) to the
generalized Hagen–Poiseuille equation [22]

∂Q
∂x

= 0, Q =
πR4

2(s + 2)μ
ΔP
l

, (2.5)

where ΔP is the pressure difference on the artery segment of length l.
Following [22], we will assume that the change in the blood flow-rate due to the motion of the arterial

wall is inconsiderable and that the viscous forces predominate over the inertial ones (the Reynolds number
is small). Thus, the blood flow-rate level is determined by the pressure gradient.

From Eqs. (2.5) it can be seen that the blood flow-rate linearly depends on the pressure gradient and is
proportional to the fourth power of the artery radius.
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We will consider the process of local autoregulation on an artery segment sufficiently short for the quasi-
stationary pressure, flow-rate and radius to be constant over the entire segment.

For axially-symmetric radial perturbations R(t) = R0(1 + η(t)), from (2.2) we obtain

τsh =
(s + 2)μ

πR3
0

Q
(1 + η)3 . (2.6)

There is a hypothesis to the effect that a constant shear stress value tends to be maintained: τsh = const
[7, 23]. An increase in flow-rate leads to an increase in the equilibrium artery radius in order to compensate
the increase in the shear stress. From (2.6) there follows the estimate for the relationship between the new
steady blood flow-rate and the new stationary value of the artery radius

R − R0

R0
=

(
3

√
Q
Q0

− 1

)
. (2.7)

We note a difference in the artery response to an increase and decrease in the blood flow-rate near the
previous stationary value. The change in the radius in response to an increase in the flow-rate is smaller
than that in response to a decrease of the same magnitude. This must be attributable to the inverse cubic
dependence of the shear stress on the artery radius.

For small radial perturbations (|η | � 1) the artery radius perturbation depends almost linearly on the
blood flow-rate.

2. Synthesis and diffusion of nitric oxide. In accordance with the endothelium-dependent mechanism
which controls the blood flow, the concentration of the nitric oxide produced by the endothelial cell is
determined by the shear stress (Fig. 1).

We will regard the transport of NO to the smooth muscle tissue as a diffusion process with absorption
(D1 is the diffusion coefficient and δ1 is the reaction rate). In the smooth muscle tissue nitric oxide continues
to diffuse with the diffusion coefficient D2 and the reaction rate δ2.

In the endothelium nitric oxide production is determined by the shear stress τsh. Therefore, this process
can be described by the kinetic equation

dne

dt
= −ke ne + k3 τsh(t), (2.8)

where ne is the NO concentration in the endothelial cell, ke is a coefficient characterizing nitric oxide mass
transfer from the cell into the blood flow, and k3 is a production constant.

As an inner boundary condition for nitric oxide diffusion across the arterial wall the solution of Eq. (2.8)

[n]r=Ri
= ne is used. On the interface between the i- and m-layers the equality of the concentrations and the

diffusion fluxes is taken into account. On the outer boundary of the m-layer the impermeability condition is
assigned.

Thus, with account for (2.6) and (2.8), the system of equations and boundary conditions for the nitric
oxide concentration has the form:

dne

dt
= −ke ne +

ψ0

(1 + η(t))3 ,

∂nj

∂ t
= D j

1
r

∂
∂ r

(
r

∂nj

∂ r

)
− δ j n j,

Ri < r < Rm, j = 1 (i), Rm < r < Ra, j = 2 (m),

[n1]r=Ri
= ne, [n1]r=Rm

= [n2]r=Rm
,

[
D1

∂n1

∂ r

]
r=Rm

=
[

D2
∂n2

∂ r

]
r=Rm

,

[
∂n2

∂ r

]
r=Ra

= 0.

(2.9)
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Here, ψ0 = k3(s + 2)μ Q/πR3
0 and Ri, Rm, and Ra are the coordinates of the i-, m- and a- layer bound-

aries, respectively.
In (2.9) it is assumed that for NO a first-order reaction occurs. System of equations (2.9), together with

the initial conditions, describes the two-layer diffusion-kinetic process for nitric oxide in the arterial wall.
3. Equation for the kinetics of the calcium ions in the smooth muscle cell. In deriving the balance equa-

tion for the Ca2+ concentration in the smooth muscle cell we will take into account the inward and outward
calcium fluxes. There are two sources of calcium ions: the extracellular space and the intracellular con-
tainers, sarcoplasmic reticulum, where the Ca2+ concentration is 104 times higher than in the intracellular
space. The balance of calcium ions in the smooth muscle cell layer corresponding to a coordinate r can be
described by the relation

∂C(r, t)
∂ t

= −α(n)C + β (P)(Ce − C), (2.10)

where the first term is responsible for the active transport of Ca2+ from the intracellular space and the
second describes the passive transport of calcium ions through calcium channels, which is determined by
the difference between the extracellular C and intracellular Ce concentrations.

Generally, the active transport coefficient α(n) depends on the NO concentration in the smooth muscle
cell, whereas the transmission coefficient β (P) is a function of the blood pressure [17]. Assuming that the
dependence of α on the NO concentration is linear and taking into account that, by virtue of the assumption
of constancy of the transmural pressure, β = const, we have

α(n) = α1 + k1n2(r, t), α1, k1 = const, (2.11)

where α1 is a coefficient corresponding to the NO-independent active Ca2+ evacuation and k1 is a coefficient
characterizing the NO-mediated decrease in the intracellular calcium ion concentration.

Taking into account that Ce � C, we will treat the second term on the right side of (2.10) as a constant
source ϕ0. Equation (2.10) then takes the form:

∂C
∂ t

= −α1C − k1n2C + ϕ0. (2.12)

Here, ϕ0 = βCe = const. Equation (2.12) is used for describing the calcium ion kinetics in the smooth
muscle layer.

4. Kinetics equation for active myosin which determines the muscular tonus. The stress developed by the
smooth muscle cell as a result of contraction is determined by the activity level of the myosin heads, which,
in its turn, depends on the intracellular concentration of calcium ions and on the Ca2+ sensitivity threshold
of the specific myosin-activating (phosphorylating) ferments.

We will describe the phosphorylated myosin kinetics in the same way as the calcium ion kinetics:

∂ f (r, t)
∂ t

= −α2 f + γ (C − Cth)θ(C − Cth), (2.13)

where the first term is responsible for the process of myosin dephosphorylation (deactivation) and the sec-
ond describes the calcium-dependent activation of the actin-myosin complex with account for the threshold
of sensitivity to the Ca2+ concentration. Here, θ is the Heaviside unit function, α2 and γ are the phosphory-
lation and dephosphorylation rate coefficients, and Cth is the threshold concentration (in general, presumed
to depend on the NO concentration). In what follows we will assume the parameters of Eq. (2.13) to be
constant.

Equation (2.13) will be used for describing the regulation of the muscular stress by calcium ions.
5. Equation of motion of the arterial wall. In order to construct a closed system of blood flow autoreg-

ulation, it is necessary to have the relationship between the artery radius perturbation and external forces
such as the pressure and the muscular force [24]. The corresponding equation of motion for a segment of the
arterial wall can be obtained with account for the constitutive equation for the arterial wall tissue [21, 25].
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We will consider a viscoelastic wall element of mass Δm, density ρw, thickness h, radius R, and length
Δx. According to the momentum conservation law,

Δm
d2R
dt2 = fr + fp,

fr = −σθ θ 2πhΔx, fp = (P − Pe)2πRΔx,

(2.14)

where Δm = ρw2πRΔxh, fr is proportional to the tangential stress tensor component σθ θ , and fp is the
resulting transmural pressure (the difference P0 = P − Pe between the internal and external pressures).

The stress tensor component σθ θ consists of three terms: the passive elastic force (weakly nonlinear with
a quadratic correction), the viscous resistance force, and the active force due to muscular tonus:

σθ θ =
E(F)

1 − ξ 2

[
R − R0

R0
+ κ1

(
R − R0

R0

)2]
+ λ

dR
dt

+ k2 F. (2.15)

Here, E(F) is Young’s modulus, which depends on the volume-averaged phosphorylated myosin con-
centration in the muscular layer, ξ is Poisson’s ratio, κ1 and λ are the nonlinear-elasticity and viscosity
coefficients of the arterial wall, F = 〈 f (r, t)〉 is the concentration of contracting actin-myosin filaments
averaged over the smooth muscle layer volume, which determines the active muscular stress, and k2 is the
coefficient of proportionality of the muscular tonus response to the phosphorylated myosin concentration.

Substituting (2.15) in (2.14) with account for the linear dependence of the muscular force on the myosin
concentration, for h0R0 = hR we obtain the equation for the radius perturbation η (R = R0(1 + η), |η | � 1)

ρwh0R0
d2η
dt2 + λh0

dη
dt

+ κ(F)[η + κ1η2] = (P − Pe) − h0

R0
k2F, (2.16)

κ(F) = κ0

(
1 + ε

F
F0

)
, κ0 =

h0E0

R0(1 − ξ 2)
, F =

2
R2

a − R2
m

Ra∫

Rm

f (r, t)r dr, (2.17)

where F0 is the volume-averaged concentration of the stationary active myosin distribution f (0)(r).
We thus obtain the integro-differential equation for describing the wall motion with account for muscular

tonus

ρwh0R0
d2η
dt2 + λh0

dη
dt

+ κ(F)[η + κ1η2] = P0 − h0 k2

R0
F. (2.18)

In the absence of muscular forces (complete relaxation of the wall), from Eq. (2.18) we obtain the equa-
tion of a nonlinear damped oscillator with an external driving force P0. The dependence on the myosin
concentrations provides feedback and differentiates the artery from a passive viscoelastic tube.

6. Formulation of the problem of blood flow autoregulation in dimensionless variables. The system of
equations for describing the autoregulation process has the form:

dne

dt
= −kene +

ψ0

(1 + η)3 , (2.19)

∂ni

∂ t
= Di

1
r

∂
∂ r

(
r

∂ni

∂ r

)
− δini,

(2.20)
i = 1 : Ri < r < Rm, i = 2 : Rm < r < Ra,
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∂C(r, t)
∂ t

= −α1C − k1n2(r, t)C + ϕ0, Rm < r < Ra, (2.21)

∂ f (r, t)
∂ t

= −α2 f + γ [C − Cth]θ(C − Cth), Rm < r < Ra, (2.22)

ρwh0R0
d2η
dt2 + λh0

dη
dt

+ κ(F)[η + κ1η2] = P0 − h0k2

R0
F. (2.23)

We will use the boundary conditions

[n1]r=Ri
= ne, [n1]r=Rm

= [n2]r=Rm
,

[
D1

∂n1

∂ r

]
r=Rm

=
[

D2
∂n2

∂ r

]
r=Rm

,

[
∂n2

∂ r

]
r=Ra

= 0.
(2.24)

As initial conditions we will take functions similar to the stationary solutions.
Equation (2.19) describes the synthesis of nitric oxide in the endothelial cell, which depends on the

shear stress value, Eq. (2.20) characterizes the NO diffusion in the i- and m-layers, respectively, Eq. (2.21)
describes the Ca2+ balance in the smooth muscle cell, Eq. (2.22) corresponds to the generation of the active
muscular stress (via the concentration of contracting actin-myosin complexes) determined by the calcium
ion concentration level, and Eq. (2.23) determines the arterial wall motion under the effect of the average
active myosin concentration.

In the system of equations (2.19)–(2.24) we introduce the dimensionless variables

ne = n0n′e, n1 = n0n′1, n2 = n0n′2,
(2.25)

C = CthC′, f = f 0 f ′, η = η ′ =
R − R0

R0
,

t = t0t ′, r = R0r′,

n0 = n0
e ≡

ψ0

ke
=

k3(s + 2)μQ

keπR3
0

,

(2.26)

f 0 ≡ F0 =
2

R2
a − R2

m

Ra∫

Rm

f (0)(r)r dr.

After substituting (2.25) we obtain the system of equations (2.21)–(2.23) in the form (we omit the primes
on the variables):

dne

dt
= −k′ene +

ψ ′
0

(1 + η)3 ,

∂ni

∂ t
= D′

i
1
r

∂
∂ r

(
r

∂ni

∂ r

)
− δ ′

i ni,

i = 1 : 1 < r < R′
m, i = 2 : R′

m < r < R′
a

(2.27)
∂C
∂ t

= −α ′
1C − k′1n2C + ϕ ′

0, R′
m < r < R′

a,

∂ f
∂ t

= −α ′
2 f + γ ′[C − 1]θ(C − 1), R′

m < r < R′
a,

d2η
dt2 + λ ′ dη

dt
+ κ ′

0(1 + εF)[η + κ1η2] = P′
0 − k′2F, F =

2
R′2

a − R′2
m

R′
a∫

R′
m

f r dr,
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k′e = ket0, ψ ′
0 =

ψ0t0
n0 , D′

1,2 =
D1,2t0

R2
0

, δ ′
1,2 = δ1,2t0,

α ′
1,2 = α1,2 t0, k′1 = k1 n0 t0, ϕ ′

0 =
ϕ0 t0
Cth

, γ ′ =
γ Cth t0

f 0 , (2.28)

λ ′ =
λ t0

ρwR0
, κ ′

0 =
κ0 t0

2

ρwh0R0
≡ E0t0

2

ρwR2
0 (1 − ξ 2)

,

P′
0 =

P0 t2
0

ρwh0R0
, k′2 =

k2 f 0t2
0

ρwR2
0

.

The boundary conditions are used in form (2.24) for r = 1, r = R′
m, and r = R′

a, where R0 = Ri, R′
m =

Rm/R0, and R′
a = Ra/R0. The initial conditions are taken close to the stationary solutions of system (2.27).

From the first of equations (2.27), with account for (2.26) and (2.28), there follows the dependence of the
nitric oxide concentration in the endothelium on the blood flow-rate Q, since the coefficient ψ ′

0 ∼ n0 ∼ Q.

3. STATIONARY SOLUTION OF THE AUTOREGULATION PROBLEM

We will consider stationary solutions of the problem, setting

ne = 1, n1,2 = n(0)
1,2

(r), C = C(0)(r), f = f (0)(r), η = 0. (3.1)

In this case, for describing the local autoregulation process we can rewrite the system of equations (2.27)
in the form:

d2n(0)
i

dr2 +
1
r

dn(0)
i

dr
− δ ′

i

D′
i

n(0)
i

= 0,

i = 1 : 1 ≤ r ≤ R′
m, i = 2 : R′

m ≤ r ≤ R′
a,

C(0)(r) =
ϕ ′

0

α ′
1 + k′1n(0)

2
(r)

, R′
m ≤ r ≤ R′

a, (3.2)

f (0)(r) =
γ ′

α ′
2

[C(0)(r) − 1]θ(C(0)(r) − 1), R′
m ≤ r ≤ R′

a,

P′
0 =

2k′2
R′2

a − R′2
m

R′
a∫

R′
m

f (0)(r) r dr

with the boundary conditions[
n(0)

1

]
r=1

= 1,
[
n(0)

1

]
r=R′

m

=
[
n(0)

2

]
r=R′

m

,

D1

[
dn(0)

1

dr

]
r=R′

m

= D2

[
dn(0)

2

dr

]
r=R′

m

,

[
dn(0)

2

dr

]
r=R′

a

= 0.

(3.3)

The ordinary differential equations (3.2) for the NO concentration have general solutions which can be
expressed in terms of the modified Bessel functions I0(z) and K0(z)

n(0)
1

(r) = A1 I0

(√
δ ′

1

D′
1

r

)
+ A2K0

(√
δ ′

1

D′
1

r

)
,

n(0)
2

(r) = B1 I0

(√
δ ′

2

D′
2

r

)
+ B2K0

(√
δ ′

2

D′
2

r

)
,

(3.4)
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Fig. 2. Stationary concentration distributions in the arterial wall: NO (1), intracellular Ca2+ (2), phosphorylated myosin
(3).

where A1, A2, B1, and B2 are arbitrary constants which can be found from boundary conditions (3.3):

A1I0(ξ1) + A2 K0(ξ1) = 1, B1I1(ξ2 R′
a) − B2 K1(ξ2 R′

a) = 0,

A1I0(ξ1R′
m) + A2 K0(ξ1 R′

m) = B1I0(ξ2 R′
m) + B2 K0(ξ2 R′

m),

D1ξ1 (A1 I1(ξ1R′
m) − A2K1(ξ1R′

m)) = D2ξ2(B1I1(ξ2 R′
m) − B2K1(ξ2R′

m)),

ξ1 ≡
√

δ ′
1/D′

1, ξ2 ≡
√

δ ′
2/D′

2.

(3.5)

Using the experimental data [22, 26, 27] for resistive muscular arteries (see the table), we find the con-
stants A1, A2, B1, and B2 from boundary conditions (3.5).

The stationary concentrations of calcium ions C(0)(r) and phosphorylated myosin f (0)(r) in the smooth
muscle layer can be determined from the corresponding equations. The equilibrium distributions of the NO,
Ca2+ and myosin concentrations are shown in Fig. 2 (the broken line is the interface between the i- and
m-layers).

4. CASE OF A THIN-WALLED ARTERY

In order to understand the system behavior qualitatively, we will consider the limiting case of a thin-
walled artery. A similar model was studied by A. Rachev and S.A. Regirer [7, 9]. We will first obtain
estimates that make it possible to go over to this limiting case. The first inequality hi/hm � 1 enables us to
consider only one layer for the diffusion-kinetic processes. The second is Tdi f � Tkin, where Tdi f = h2/D
and Tkin = min{1/δ , n0/ψ0, . . .} are the characteristic times of the diffusion and kinetic processes. Here, hi
and hm are the thicknesses of the i- and m-layers, respectively, and h is the spatial scale of the wall thickness.
Assuming that for nitric oxide the kinetic processes occur more rapidly in the vessel wall than on the inner
boundary (in the endothelium) we have

h �
√

D
δ

≡ h0, (4.1)

where h0 is a characteristic wall thickness for which passage to the limit is possible and δ is the kinetic
mass-transfer coefficient. Taking into account that typical values of the parameters are D = 3300 μm2/s and
δ = 0.25 s−1 [12, 22], we obtain h0 
 115 μm.

For arteries of large and medium diameter the characteristic h value varies from 100 to 1000 μm, whereas
for small arteries and arterioles the thicknesses are smaller: h ∼ 10 μm. Thus, the limiting case considered
describes the blood flow autoregulation in small arteries with h � 100 μm.

In this case, the intima and media layers are sufficiently thin for it to be possible to disregard the multi-
layer structure of the arterial wall and diffusion in it.
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Table

Parameter Value Source

R0 2000 μm [30]

h0 450 μm [30]

ψ0 0.1 μmol/s [12]

α1 0.05 s−1 [7]

α2 0.5 s−1 [17]

D1,2 3300 μm2/s [22]

δ1 0.1 s−1 [22]

δ2 0.01 s−1 [22]

E 3×105 Pa [3]

ρw 1100 kg/m3 [3]

P0 115 mm Hg [30]

Q0 105 ml/min [30]

If we average over the thickness of the wall and neglect its inertia (since the natural wall oscillation
period is small as compared with the characteristic times of the kinetic processes), system (2.27) takes the
form:

dn
dt

= −kn +
a

(1 + y)3 ,

dx
dt

= −α1x − k1nx − γ1n + b,

d f
dt

= −α2 f + γ2x,

dy
dt

= −A
β

− κ0

β
(1 + ε f )[y + κ1y2] +

B
β

,

(4.2)

where n ≡ ne(t)/n0 and x ≡ (C(t) − Cth)/x0 are concentrations of nitric oxide in the endothelium and of
Ca2+ in the smooth muscle layer higher than the threshold concentration, f = f (t)/ f0 is the concentration
of active myosin in the smooth muscle cells (n0, x0, and f0 are characteristic concentrations), y ≡ η(t) =
(R − R0)/R0 is the vessel radius deviation (|η | � 1), and the dimensionless constants are determined by the
formulas k = k′e, a = ψ ′

0, α1,2 = α ′
1,2, k1 = k′1, γ1 = k′1Cth/x0, b = (ϕ ′

0 − α ′
1)Cth/x0, γ2 = γ ′x0/Cth, β = λ ′,

κ0 = κ ′
0, A = k′2, and B = P′

0 (see (2.28)).

We will find the stationary points of system (4.2). Taking into account that

bk − aγ1

α1k + ak1
=

α2B
γ2A

, (4.3)

we obtain the stationary point {n = a/k, x = α2B/γ2A, f = B/A, y = 0} corresponding to the undisturbed
artery state. Relation (4.3) reflects the balance between the muscular forces determined by the calcium ion
concentration and the blood pressure forces. The equilibrium Ca2+ concentration is equal to α2B/γ2A ∼
P0R0/ f0h0.

We will investigate the stability of the dynamic system (4.2) on the assumption that the myosin phospho-
rylation process is quasi-stationary ( f = γ2x/α2). We will consider the linearized system near the stationary
point of the simplified system {n0 = a/k, x0 = B/A1, y0 = 0}, taking into account the relation
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Fig. 3. Phase trajectory of system (4.2) in the plane (x, y) for different values of the wall viscosity parameter (a), (b) and
regions of linear stability of the dynamic system in the parameter β , corresponding to the upper half-plane (c).

dX
dt

= MX + F, (4.4)

M =

⎛
⎜⎜⎝
−k 0 −3a
−C −D 0

0 −A1

β
−κ

β

⎞
⎟⎟⎠ , X = (n, x, y)T, F =

(
a, b + k1n0x0,

B
β

)T

,

A1 =
γ2A
α2

, ε1 =
γ2ε
α2

, C = k1x0 + γ1, D = k1n0 + α1, κ = κ0(1 + ε1x0).

The Routh–Hurwitz criterion yields a condition for the Hurwitz determinants, composed of the coeffi-
cients of the characteristic polynomial of the matrix M, which ensures the negativeness of the real parts of
all the eigenvalues of this matrix. The stability condition is

(kD2 + k2D)β 2 + (κD2 + 2kκD − 3aA1C + k2κ)β + κ2D + kκ2 > 0. (4.5)

Relation (4.5) makes it possible to determine the range of the arterial-wall viscosity β values on which
the equilibrium state is linearly stable.
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The results of a numerical stability analysis for the initial system (4.2) are shown in Fig. 3. Taking
into account that the coefficients of system (4.2) are positive, a sufficient condition of linear stability in the
parameter β is obtained (the upper half-plane in Fig. 3a corresponding to a positive determinant H3).

For the region of nonlinear stability in the wall viscosity parameter (the lower half-plane in Fig. 3c) it
is shown that a regime of undamped periodic oscillations exists. This suggests that, for the endothelium-
dependent blood flow regulation factor to function normally in the vessel and for this factor to interact with
the other regulatory mechanisms, the viscosity parameter β must lie within the range of undamped oscil-
lations. The role of the model dissipation in providing stability within the framework of the endothelium-
dependent mechanism was noted in [9].

A numerical analysis in the phase space (n, x, f , y) confirms the preliminary estimates (see the two-
dimensional projection of the system phase trajectory on the plane (x, y), Fig. 3): if β lies outside the range
of linear stability, a limit cycle develops (a) and if it lies within this range, damped oscillations (b) can be
observed.

5. CASE OF A PASSIVE VESSEL

From the limiting case of a thin-walled artery it can be seen that the higher the blood flow-rate at a
constant transmural pressure, the lower the equilibrium calcium concentration. In the initial model a variable
distribution of the Ca2+ concentration in the vessel wall is realized. With decrease in the equilibrium calcium
concentration over the entire wall thickness to a level lower than the threshold level Cth the muscular layer
completely relaxes. In this case, the “active” viscoelastic tube becomes “passive”. In dimensionless form
the equation of motion for the arterial wall is as follows:

d2η
dt2 + λ

dη
dt

+ κ0(η + κ1η2) = P0. (5.1)

We will obtain an exact solution of Eq. (5.1) using the method of “simplest equations” [28] which gen-
eralizes certain existing approaches, such as the “hyperbolic tangent” and “elliptic test function” methods
[29].

Taking into account the second-order pole in the general solution of (5.1), we will seek a solution in the
form of expansion

η(t) = A0 + A1G(t) + A2G(t)2, (5.2)

where G(t) is a solution, with first-order pole, of the equation

dG(t)
dt

= k G(t) − kG(t)2. (5.3)

Here, A0, A1, A2, and k are arbitrary constants to be found.
Substituting expansion (5.2) in Eq. (5.1), we find

A0 = −30λk + 25κ0 − λ 2 + 25k2

50κ0κ1
, A1 =

6k(λ + 5k)
5κ0κ1

,

A2 = − 6k2

κ0κ1
, P0 = −−36λ 4 + 625κ2

0

2500κ0κ1
, k = ±λ

5
.

(5.4)

Using the solution G(t) = 0.5[1 + tanh(0.5k(t − t0))] of the auxiliary equation (5.3) and taking k = λ/5,
we obtain an exact solution of Eq. (5.1) in the form:

η(t) =
1

50κ0κ1
(3λ 2 − 25κ0 + 6λ 2 tanh[0.1λ (t − t0)] − 3λ 2 tanh2[0.1λ (t − t0)]), (5.5)

where t0 is an arbitrary constant.
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Fig. 4. Comparison of the exact (1) and numerical (2) solutions of Eq. (5.1) describing the passive dilatation of the artery.

Given the additional condition η(0) = 0, t0 = 0 the following relationships between the parameters hold:

κ0 =
4κ1P0

3
, λ =

√
25κ0

3
. (5.6)

Having simplified (5.5), with account for (5.6) we finally obtain the solution of Eq. (5.1) in the form of
a kink, which describes the passive dilatation of the artery:

η(t) = η∞ tanh

(
λ t
10

)(
2 − tanh

(
λ t
10

))
, η∞ =

2P0

3κ0
. (5.7)

Solution (5.7) represented by curve 1 in Fig. 4 is a switching wave which characterizes the transition of
the system from one stationary state to another under the action of a constant force field.

We note that solution (5.7) describes the undisturbed state of the artery at the initial moment η(0) = 0,
when the pressure and the smooth muscular force equilibrate each other. After the muscular force has
disappeared (due to a sharp decrease in the calcium level), the artery dilates until a balance between the
blood pressure and wall elasticity forces is reached, that is, goes over into a new equilibrium state.

The new artery radius, which depends on the pressure P0 and the elastic properties of the wall, can be
estimated as η∞.

6. NUMERICAL INVESTIGATION OF THE AUTOREGULATION PROBLEM

For describing the blood flow regulation process in the general case, the two-layer diffusion-kinetic
model (2.27) was considered. The problem was solved numerically using an implicit finite difference
method. In each time step, to find the radius deviation, we carried out iterations in the calcium concen-
tration and applied the trapezoidal rule. A uniform grid with a radial step Δr = 1.2 × 10−3, time step
Δt = 1.2× 10−4, and iteration error 1× 10−4 was used. As new initial conditions the disturbed stationary
distributions (3.4) were assigned.

As a test solution in the case of passive dilatation of the artery, the exact solution (5.7) was taken. A
comparison shows good agreement between the numerical and exact solutions (Fig. 4).

In response to a change in the average blood flow-rate, determined by the coefficient ψ ′
0 ∼ Q in kinetic

equation (2.19), as a result of damping of the oscillations the system goes over into a new equilibrium
state (Fig. 5). In the calculations we used the characteristic parameter values given in the table, the elastic
modulus E0 = 0.15×105 Pa, and the pressure P0 = 2×104 Pa 
 150 mm Hg.

The characteristic period of the slow radius oscillations observed is equal to about 50 s. This is consistent
with the experimentally obtained oscillation frequencies due to endothelium-dependent regulation, which
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Fig. 5. Time dependence of the relative change in the artery radius η with increase (1) and decrease (2) in the average
blood flow-rate by 25%.

vary on the range 0.01–0.1 Hz [31]. These oscillations are determined not by the characteristic frequencies
of the natural mechanical oscillations of the artery but by the characteristic times of the kinetic processes in
the vessel wall, that is, are modulated by the active muscular contraction.

It is noteworthy that the system response to a change in the flow-rate may differ. The relaxation times
corresponding to an increase and a decrease in the blood flow-rate are not the same. This is attributable to
the flow-rate dependence of the width of the interval of the arterial-wall viscosity parameter β on which the
system is linearly stable in accordance with (4.5). The artery radius deviation is somewhat greater in the
case of flow-rate decrease due to the inverse cubic dependence of the shear stress on the radius.

We will compare the numerical results with the experimental data [30]. In this experiment on anes-
thetized dogs the quantitative relationship between an increase in the blood flow-rate and the artery diam-
eter was determined. The artery diameter was measured at two points on the artery. At one of these the
endothelial layer was artificially damaged, whereas at the other it was left intact. The average pressure P0
was maintained constant.

At the site with an intact endothelium the effect of both a short-term (less than 1 min) and a sustained
(more than 3 min) increase in the blood flow-rate on the artery diameter was observed and recorded, whereas
at the site with a damaged epithelial layer the diameter variations were negligible and related with small
variations of the transmural pressure [30].

A sustained (3–4 min) increase in the average blood flow-rate level from 104.7 ± 15.1 to 694.7 ±
135.1 ml/min led to an increase in the outside diameter from the reference value 4.89 ± 0.12 mm to 5.37 ±
0.10 mm. The corresponding experimental data are presented in Fig. 5 in [30].

The characteristic data used in the numerical simulation of the autoregulation process are given in the
table. In addition, we used the following parameter values: k1 = 0.015 s−1, ϕ0 = 0.00581 μmol/s, Cth =
0.1 μmol, n0 = 1 μmol, γ = 10 s−1, ξ = 0.5, ε = 0.1, t0 = 10 s, and λ = 0.1E0t0/R0 kg m−2 s−1.

The numerically calculated time dependence of the average diameter with increase in the average blood
flow-rate is shown in Figs. 6 and 7 for model parameters corresponding to the experimental conditions [30].
An almost sevenfold increase in the blood flow-rate in accordance with the hyperbolic-tangent law gave a
relative increase in the inner artery radius of about 12%. The time lag in the vessel wall relaxation (Fig. 6b)
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Fig. 6. Time dependence of the relative change in the radius of the external iliac artery (b) during a prolonged change in
the average blood flow-rate level (a) (numerical calculation).

Fig. 7. Comparison of the experimental and numerical dependences of the change in artery diameter (mm) on the change
in blood flow-rate (ml/min): (a) experimental data [30] ((1) measurement data, (2) linear regression), (b) mathematical
modeling of the local autoregulation process (symbols denote the data of a series of calculations).

in response to an increase in the blood flow-rate (Fig. 6a) is equal to about 20 s and consistent with the
experimental data [5, 16, 30].

In Fig. 7 the experimental dependence of the variation of the outer diameter ΔD on the maximum blood
flow-rate in the dog external iliac artery with intact endothelium obtained in [30] (Fig. 7a) is compared with
the dependence of ΔD on the average flow-rate obtained numerically under similar conditions (Fig. 7b).

The average slope of the numerically obtained flow-rate dependence of the vessel diameter is equal to
0.8× 10−3 mm ml−1 min, which is consistent with the experimental data 0.83 ± 0.15× 10−3 mm ml−1

min obtained in [30] using linear regression analysis.

We note that in Fig. 7 the numerical dependence is weakly nonlinear and similar in shape to the cube-root
function, which may be attributed to the tendency to maintain a constant shear stress on the inner surface
during blood flow.

Summary. For describing the local arterial autoregulation process due to the shear stress a two-layer
diffusion-kinetic model is proposed.

In the stationary case, accurate distributions of the concentrations of the key agents: nitric oxide, calcium
ions, and phosphorylated myosin, are found.
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The limiting case of a thin-walled artery is studied analytically. A sufficient condition of stability of the
dynamic system that describes autoregulation is obtained. The importance of viscoelasticity in ensuring the
stability of the system equilibrium state is demonstrated.

In the case of complete relaxation of the artery wall muscles, an exact solution in the form of a transition
wave, which describes the passive artery dilatation, is found. This case of complete wall muscle relaxation
may be realized when nitric oxide donors, such as nitroglycerine and sodium nitroprusside, are introduced
into the blood flow.

Using a numerical simulation, the transition of the system to a new equilibrium state with a new radius
value in response to a change in the blood flow-rate level is investigated. The presence of a time lag in the
artery response is shown. The numerical results are consistent with the experimental data.

The work was supported financially by the International Scientific and Technical Center (project No. B-
1213).
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