

Convergence and Stability of Iterations for Matrix Functions

Nick Higham School of Mathematics The University of Manchester

higham@ma.man.ac.uk
http://www.ma.man.ac.uk/~higham/

21st Biennial Conference on Numerical Analysis, June 2005

Dundee '85

THE NUMERICAL STABILITY OF TWO MATRIX NEWTON ITERATIONS

Nick Higham

Department of Mathematics University of Mancheoter

Numerical Analysis Report available on request.

Iteration (I) $Y_{K+1} = \frac{1}{2} (Y_{K} + Y_{K}^{-1}A); \quad Y_{0} = A \text{ nonsingular.}$

Assume: $\lambda_i(A) \notin \mathbb{R}^-$ and det $(Y_k) \neq 0$ for all k.

Then $Y_{\kappa} \rightarrow A^{\frac{1}{2}}$ quadratically as $\kappa \rightarrow \infty$ where $A^{\frac{1}{2}} = unique$ square root of A for which every eigenvalue has positive real part.

Overview

Iterations $X_{k+1} = g(X_k)$ for computing \sqrt{A} , sign(*A*), $\sqrt[p]{A}$ (+ unitary polar factor).

- Avoid Jordan form in convergence proofs. Reduce to: Does G^k tend to zero?
- Can reduce stability to: Is H^k bounded?
- Connections: matrix sign and matrix square root.
- Role of commutativity.
- Rule of thumb for deriving stable iterations.

10 Digit Algorithm

%cuberootA2 Cube root of matrix by Newton iteration. % Cf. cuberootA, Ten Digit Algorithms, LNT.

```
p = 3; % p'th root. p can be arbitrary.
n = 4;
A = rand(n)/sqrt(n) + 3*eye(n)
X = eye(n); M = A;
for i=1:10
    W = ((p-1) * eye(n) + M) / p;
    X = X * W;
    M = W^{(-p)} \star M;
end
Χ
res = norm(A-X^p)/norm(A)
```

res =

3.4719e-016

Matrix Square Root

• X is a square root of $A \in \mathbb{C}^{n \times n} \iff X^2 = A$.

Number of square roots may be zero, finite or infinite.

For *A* with no eigenvalues on $\mathbb{R}^- = \{x \in \mathbb{R} : x \leq 0\}$, denote by $A^{1/2}$ the **principal square root**: unique square root with spectrum in open right half-plane.

Matrix Sign Function

Let $A \in \mathbb{C}^{n \times n}$ have **no pure imaginary eigenvalues** and let $A = ZJZ^{-1}$ be a Jordan canonical form with

$$J = {p \atop q} \begin{bmatrix} p & q \\ J_1 & 0 \\ 0 & J_2 \end{bmatrix}, \qquad \Lambda(J_1) \in \mathsf{LHP}, \quad \Lambda(J_2) \in \mathsf{RHP}.$$

$$\operatorname{sign}(A) = Z \begin{bmatrix} -I_p & 0\\ 0 & I_q \end{bmatrix} Z^{-1}.$$

Matrix Sign Function

Let $A \in \mathbb{C}^{n \times n}$ have **no pure imaginary eigenvalues** and let $A = ZJZ^{-1}$ be a Jordan canonical form with

$$J = {p \atop q} \begin{bmatrix} p & q \\ J_1 & 0 \\ 0 & J_2 \end{bmatrix}, \qquad \Lambda(J_1) \in \mathsf{LHP}, \quad \Lambda(J_2) \in \mathsf{RHP}.$$

$$\operatorname{sign}(A) = Z \begin{bmatrix} -I_p & 0\\ 0 & I_q \end{bmatrix} Z^{-1}.$$

$$sign(A) = A(A^2)^{-1/2}$$

$$\operatorname{sign}(A) = \frac{2}{\pi} A \int_0^\infty (t^2 I + A^2)^{-1} dt.$$

Newton's Method for Sign

$$X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}), \qquad X_0 = A.$$

Convergence

• Let
$$S := \operatorname{sign}(A)$$
, $G := (A - S)(A + S)^{-1}$. Then
 $X_k = (I - G^{2^k})^{-1}(I + G^{2^k})S$,
Ei'vals of G are $(\lambda_i - \operatorname{sign}(\lambda_i))/(\lambda_i + \operatorname{sign}(\lambda_i))$.
Hence $\rho(G) < 1$ and $G^k \to 0$.

Easy to show

$$\|X_{k+1} - S\| \le \frac{1}{2} \|X_k^{-1}\| \|X_k - S\|^2$$

Frechét Derivative

The Fréchet derivative of a matrix function $f: \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$ at a point $X \in \mathbb{C}^{n \times n}$ is a linear mapping $L_X: \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$ such that for all $E \in \mathbb{C}^{n \times n}$

$$f(X+E) - f(X) - L_X(E) = o(||E||).$$

Example For $f(X) = X^2$ we have

$$f(X + E) - f(X) = XE + EX + E^2,$$

SO $L_X(E) = XE + EX$.

Newton's Method for Square Root

Newton's method: X_0 given,

Solve
$$X_k E_k + E_k X_k = A - X_k^2$$

 $X_{k+1} = X_k + E_k$ $\left. \begin{cases} k = 0, 1, 2, \dots \\ 0, 1, 2, \dots \end{cases} \right.$

Newton's Method for Square Root

Newton's method: X_0 given,

Solve
$$X_k E_k + E_k X_k = A - X_k^2$$

 $X_{k+1} = X_k + E_k$ $\left\{ \begin{array}{c} k = 0, 1, 2, \dots \end{array} \right\}$

Assume $AX_0 = X_0A$. Then can show

$$X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}A). \tag{*}$$

- For nonsingular A, local quadratic cgce of full Newton to a primary square root.
- To which square root do the iterations converge?
- (*) can converge when full Newton breaks down.
- Lack of symmetry in (*).

Convergence (Jordan)

Assume $X_0 = p(A)$ for some poly p. Let $Z^{-1}AZ = J$ be Jordan canonical form and set $Z^{-1}X_kZ = Y_k$. Then

$$Y_{k+1} = \frac{1}{2}(Y_k + Y_k^{-1}J), \qquad Y_0 = J.$$

• Convergence of diagonal of Y_k reduces to scalar case:

Heron:
$$y_{k+1} = \frac{1}{2} \left(y_k + \frac{\lambda}{y_k} \right), \qquad y_0 = \lambda.$$

Can show that off-diagonal converges.

Problem: analysis does not generalize to $X_0A = AX_0!$ X_0 not necessarily a polynomial in A.

Convergence (via Sign)

Theorem 1 Let $A \in \mathbb{C}^{n \times n}$ have no eigenvalues on \mathbb{R}^- . The Newton square root iterates X_k with $X_0A = AX_0$ are related to the Newton sign iterates

$$S_{k+1} = \frac{1}{2}(S_k + S_k^{-1}), \qquad S_0 = A^{-1/2}X_0$$

by $X_k \equiv A^{1/2}S_k$. Hence, provided that $A^{-1/2}X_0$ has no pure imaginary eigenvalues, the X_k are defined and $X_k \rightarrow A^{1/2} \operatorname{sign}(S_0)$ quadratically.

Conclude: $X_k \rightarrow A^{1/2}$ if spectrum of $A^{-1/2}X_0$ is in RHP, e.g., if $X_0 = A$.

Convergence: Singular Case

$$X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}A), \qquad X_0 = A.$$

Convergence: Singular Case

$$X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}A), \qquad X_0 = A.$$

Notice that $X_1 = \frac{1}{2}(A + I)$.

Convergence: Singular Case

$$X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}A), \qquad X_0 = A.$$

Notice that $X_1 = \frac{1}{2}(A+I)$.

Theorem 4 Let singular $A \in \mathbb{C}^{n \times n}$ have semisimple zero eigenvalues and nonzero eigenvalues lying off \mathbb{R}^- . The Newton iterates X_k started with $X_1 = \frac{1}{2}(I + A)$ are nonsingular and converge linearly to $A^{1/2}$, with

$$||X_k - A^{1/2}|| = O(2^{-k}).$$

Proof JCF: $A = Z \operatorname{diag}(J_1, 0)Z^{-1}$. Then $X_1 = Z \operatorname{diag}((J_1 + I)/2, I/2)Z^{-1}, \ldots,$ $X_k = Z \operatorname{diag}(J_1^{(k)}, 2^{-k}I)Z^{-1}.$

Numerical Example

Positive definite	Wilson matri	X: $A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left[\right], \kappa_2(A) \approx$
	Sign		Square root	
	$\ I - X_k\ _2$	$(X_k)_{11}$	$\frac{\ A^{1/2} - X_k\ _2}{\ A^{1/2}\ _2}$	$(X_k)_{11}$
2	2.36e1	8.90e0	5.97e-1	3.36e0
3	1.13e1	4.67e0	1.12e-1	2.57e0
4	5.21e0	2.61e0	5.61e-3	2.40e0
5	2.19e0	1.63e0	4.57e-3	2.40e0
6	7.50e-1	1.20e0	1.22e-1	2.21e0
7	1.61e-1	1.04e0	3.26e0	7.20e0
8	1.11e-2	1.00e0	8.74e1	-1.26e2
9	6.12e-5	1.00e0	2.33e3	3.41e3
10	9.78e-10	1.00e0	1.91e4	2.79e4
11	0	1.00e0	1.97e4	-2.87 e4

2984.

History of Newton Sqrt Instability

Instability of Newton noted by Laasonen (1958):

"Newton's method if carried out indefinitely, is not stable whenever the ratio of the largest to the smallest eigenvalue of A exceeds the value 9."

- Described informally by Blackwell (1985) in Mathematical People: Profiles and Interviews.
- Analyzed by H (1986) for diagonalizable A by deriving "error amplification factors".

Stability

Definition 1 The iteration $X_{k+1} = g(X_k)$ is stable in a nbhd of a fixed point X if the Fréchet derivative dg_X has bounded powers.

Stability

Definition 1 The iteration $X_{k+1} = g(X_k)$ is stable in a nbhd of a fixed point X if the Fréchet derivative dg_X has bounded powers.

Stability is trivial for scalars, since g'(x) = 0!For matrices, $dg_X \neq 0$.

Stability

Definition 1 The iteration $X_{k+1} = g(X_k)$ is stable in a nbhd of a fixed point X if the Fréchet derivative dg_X has bounded powers.

Let $X_0 = X + E_0$, $E_k := X_k - X$. Then $X_{k+1} = g(X_k) = g(X + E_k) = g(X) + dg_X(E_k) + o(||E_k||).$ So, since q(X) = X,

 $E_{k+1} = dg_X(E_k) + o(||E_k||).$

If $||dg_X^i(E)|| \le c$, then recurring leads to

$$||E_k|| \le c ||E_0|| + kc \cdot o(||E_0||).$$

Stability of Newton Square Root

$$g(X) = \frac{1}{2}(X + X^{-1}A).$$

$$dg_X(E) = \frac{1}{2}(E - X^{-1}EX^{-1}A).$$

• Relevant fixed point: $X = A^{1/2}$.

$$dg_{A^{1/2}}(E) = \frac{1}{2}(E - A^{-1/2}EA^{1/2}).$$

Ei'vals of $dg_{A^{1/2}}$ are

$$\frac{1}{2}(1 - \lambda_i^{-1/2}\lambda_j^{1/2}), \qquad i, j = 1:n.$$

For stability we need

$$\max_{i,j} \frac{1}{2} \left| 1 - \lambda_i^{-1/2} \lambda_j^{1/2} \right| < 1.$$

For hpd A, need $\kappa_2(A) < 9$.

Advantages

- Uses only Fréchet derivative of *g*.
- No additional assumptions on *A*.
- Perturbation analysis is all in the definition.
- General, unifying approach.
- Facilitates analysis of families of iterations.

Stabilizing Newton

$$X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}A), \qquad X_0 = A.$$

Stabilizing Newton

$$X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}A), \qquad X_0 = A.$$

"Symmetrize":

$$X_{k+1} = \frac{1}{2} \left(X_k + A^{1/2} X_k^{-1} A^{1/2} \right), \qquad X_0 = A.$$

Let $Y_k = A^{-1/2} X_k A^{-1/2}$. Then

$$X_{k+1} = \frac{1}{2} \left(X_k + Y_k^{-1} \right), \qquad X_0 = A,$$
$$Y_{k+1} = \frac{1}{2} \left(Y_k + X_k^{-1} \right), \qquad Y_0 = I.$$

The iteration of Denman & Beavers (1976).

Class of Square Root Iterations

Theorem 5 Suppose the iteration $X_{k+1} = X_k h(X_k^2)$, $X_0 = A$ converges to sign(A) with order m. If $\Lambda(A) \cap \mathbb{R}^- = \emptyset$ and

$$Y_{k+1} = Y_k h(Z_k Y_k), \qquad Y_0 = A,$$

 $Z_{k+1} = h(Z_k Y_k) Z_k, \qquad Z_0 = I,$

then $Y_k \to A^{1/2}$ and $Z_k \to A^{-1/2}$ as $k \to \infty$ with order m.

Class of Square Root Iterations

Theorem 5 Suppose the iteration $X_{k+1} = X_k h(X_k^2)$, $X_0 = A$ converges to sign(A) with order m. If $\Lambda(A) \cap \mathbb{R}^- = \emptyset$ and

$$Y_{k+1} = Y_k h(Z_k Y_k), \qquad Y_0 = A,$$

 $Z_{k+1} = h(Z_k Y_k) Z_k, \qquad Z_0 = I,$

then $Y_k \to A^{1/2}$ and $Z_k \to A^{-1/2}$ as $k \to \infty$ with order m.

• Proof makes use of
$$\operatorname{sign}\left(\begin{bmatrix} 0 & A \\ I & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & A^{1/2} \\ A^{-1/2} & 0 \end{bmatrix}$$
.

Newton sign leads to DB iteration.
 Sign: X_{k+1} = X_k · ¹/₂(I + (X_k²)⁻¹) ≡ X_kh(X_k²), X₀ = A.
 DB: Y_{k+1} = ¹/₂Y_k(I + (Z_kY_k)⁻¹) = ¹/₂(Y_k + Z_k⁻¹), Y₀ = A.

Stability of Sign Iterations

Theorem 6 Let $X_{k+1} = g(X_k)$ be any superlinearly convergent iteration for $S = sign(X_0)$.

Then $dg_S(E) = L_S(E) = \frac{1}{2}(E - SES)$, where L_S is the

Fréchet derivative of the matrix sign function at S. Hence dg_S is **idempotent** ($dg_S \circ dg_S = dg_S$) and the **iteration is stable**.

"All" sign iterations are automatically stable.

Implication

Theorem 7 Consider the iteration function

$$G(Y,Z) = \begin{bmatrix} Yh(ZY) \\ h(ZY)Z \end{bmatrix},$$

where $X_{k+1} = X_k h(X_k^2)$ is any superlinearly convergent iteration for sign(X_0). Any pair $P = (B, B^{-1})$ is a fixed point for *G*, and the Fréchet derivative of *G* at *P* is

$$dG_P(E,F) = \frac{1}{2} \begin{bmatrix} E - BFB\\ F - B^{-1}EB^{-1} \end{bmatrix}.$$

 dG_P is idempotent and hence the iteration is stable.

In particular: DB iteration is stable.

Stability is Subtle

$$G_1(Y,Z) = \begin{bmatrix} Yh(ZY) \\ h(ZY)Z \end{bmatrix}$$

gives a **stable** iteration.

$$G_2(Y,Z) = \begin{bmatrix} Yh(ZY) \\ Zh(ZY) \end{bmatrix}$$

gives an **unstable** iteration.

Avoid using commutativity when deriving iterations.

f(AB) and f(BA)

For any polynomial, Ap(BA) = p(AB)A. **Theorem 8** Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$ and let f be defined on the spectra of both AB and BA. Then

$$Af(BA) = f(AB)A.$$

E.g., $A(BA)^{1/2} = (AB)^{1/2}A$.

Previous slide:

$$h(ZY)Z \Rightarrow Zh(ZY)$$
 ×
 $h(ZY)Z \Rightarrow Zh(YZ)$ \checkmark

Rule of Thumb Use (*) instead of commutativity when deriving iterations. (*)

Matrix *p***th Root**

Newton's method: $X_{k+1} = \frac{1}{p} ((p-1)X_k + X_k^{1-p}A)$

Newton Convergence

Theorem 9 (lannazzo, 2005) For all p > 1, the iteration

$$x_{k+1} = \frac{1}{p} \left((p-1)x_k + x_k^{1-p}a \right), \qquad x_0 = 1,$$

converges quadratically to $a^{1/p}$ if a belongs to

$$S := a \in \{ z \in \mathbb{C} : \operatorname{Re} z > 0 \text{ and } |z| \le 1 \} \cup \mathbb{R}^+.$$

Corollary 1 Let $A \in \mathbb{C}^{n \times n}$ have no eigenvalues on \mathbb{R}^- . For all p > 1, the Newton iteration with $X_0 = I$ converges quadratically to $A^{1/p}$ if all the eivals of A belong to S.

Algorithm for $A^{1/p}$

Algorithm 1 (lannazzo, 2005) Given $A \in \mathbb{C}^{n \times n}$ having no ei'vals on \mathbb{R}^- this alg. computes $A^{1/p}$.

1
$$B = A^{1/2}$$

2 $C = B/||B||$ (any norm)

4 $X = ||B||^{2/p} Y$

3 Use Newton to compute $Y = \begin{cases} C \\ C \end{cases}$

=
$$\begin{cases} C^{2/p}, & p \text{ even,} \\ \left(C^{1/p}\right)^2, & p \text{ odd.} \end{cases}$$

C satisfies conditions of corollary, since $A(C) \in \mathsf{RHP}$, and $\rho(C) \leq \|C\| = 1$.

Algorithm for $A^{1/p}$

Algorithm 2 (lannazzo, 2005) Given $A \in \mathbb{C}^{n \times n}$ having no ei'vals on \mathbb{R}^- this alg. computes $A^{1/p}$.

1
$$B = A^{1/2}$$

2 $C = B/||B||$ (any norm)
3 Use Newton to compute $Y = \begin{cases} C^{2/p}, & p \text{ even,} \\ (C^{1/p})^2, & p \text{ odd.} \end{cases}$
4 $X = ||B||^{2/p}Y$

C satisfies conditions of corollary, since $A(C) \in {\rm RHP}\!,$ and $\rho(C) \leq \|C\| = 1.$

Problem: Newton is unstable!

Algorithm for $A^{1/p}$

Define $M_k = X_k^{-p} A$. Then obtain (lannazzo, 2005)

$$X_{k+1} = X_k \left(\frac{(p-1)I + M_k}{p} \right), \qquad X_0 = I,$$

$$M_{k+1} = \left(\frac{(p-1)I + M_k}{p} \right)^{-p} M_k, \qquad M_0 = A.$$

Can show

$$dG_{(X,I)}(E,F) = \begin{bmatrix} I & -\frac{X}{p} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} E \\ F \end{bmatrix}.$$

Hence $dG_{(A^{1/p},I)}$ is idempotent and iteration is stable. Other iterations for $A^{1/p}$: Bini, H & Meini (Num. Alg., 2005).

f(AB) and $f(BA)\ {\rm Again}$

Recall Af(BA) = f(AB)A.

Theorem 10 Let $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{n \times m}$, with $m \ge n$, assume *BA* nonsingular, and let *f* be defined on spectrum of $\alpha I_m + AB$. Then

$$f(\alpha I_m + \underbrace{AB}_{m \times m}) = f(\alpha)I_m + A\underbrace{(BA)^{-1}(f(\alpha I_n + BA) - f(\alpha)I_n)}_{n \times n}B.$$

$$n = 1: f(\alpha I + uv^*) = f(\alpha)I + f[\alpha + v^*u, \alpha]uv^*.$$

 $f(x) = x^{-1}$: Sherman–Morrison–Woodbury, after $A + UV^* = A(I + A^{-1}U \cdot V^*)$.

Conclusions

- Stability equivalent to matrix power boundedness.
- Better understanding of convergence analysis (prefer matrix powers to Jordan form.)
- Matrix sign function is fundamental and connections with sqrt can be exploited.
- **Rule of thumb**: don't use commutativity, use Af(BA) = f(AB)A.
- More to say about structured A: preservation of structure in f(A) and in iterates X_k (H, Mackey, Mackey, Tisseur, 2004, 2005—SIMAX).

http://www.ma.man.ac.uk/~higham/