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Overview

Iterations Xk+1 = g(Xk) for computing
√

A, sign(A), p
√

A

(+ unitary polar factor).

Avoid Jordan form in convergence proofs.

Reduce to: Does Gk tend to zero?

Can reduce stability to: Is Hk bounded?

Connections: matrix sign and matrix square root.

Role of commutativity.

Rule of thumb for deriving stable iterations.
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10 Digit Algorithm

%cuberootA2 Cube root of matrix by Newton iteration.

% Cf. cuberootA, Ten Digit Algorithms, LNT.

p = 3; % p’th root. p can be arbitrary.

n = 4;

A = rand(n)/sqrt(n) + 3*eye(n)

X = eye(n); M = A;

for i=1:10

W = ((p-1)*eye(n) + M)/p;

X = X*W;

M = Wˆ(-p)*M;

end

X

res = norm(A-Xˆp)/norm(A)

res =

3.4719e-016
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Matrix Square Root

X is a square root of A ∈ C
n×n ⇐⇒ X2 = A.

Number of square roots may be zero, finite or infinite.

For A with no eigenvalues on R
− = {x ∈ R : x ≤ 0} , denote

by A1/2 the principal square root: unique square root
with spectrum in open right half-plane.

5



Matrix Sign Function

Let A ∈ C
n×n have no pure imaginary eigenvalues and let

A = ZJZ−1 be a Jordan canonical form with

J =

[
p q

p J1 0
q 0 J2

]

, Λ(J1) ∈ LHP, Λ(J2) ∈ RHP.

sign(A) = Z

[
−Ip 0
0 Iq

]

Z−1.
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Matrix Sign Function

Let A ∈ C
n×n have no pure imaginary eigenvalues and let

A = ZJZ−1 be a Jordan canonical form with

J =

[
p q

p J1 0
q 0 J2

]

, Λ(J1) ∈ LHP, Λ(J2) ∈ RHP.

sign(A) = Z

[
−Ip 0
0 Iq

]

Z−1.

sign(A) = A(A2)−1/2 .

sign(A) =
2

π
A

∫
∞

0
(t2I + A2)−1 dt.
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Newton’s Method for Sign

Xk+1 = 1
2(Xk + X−1

k ), X0 = A.

Convergence

Let S := sign(A), G := (A − S)(A + S)−1. Then

Xk = (I − G2k

)−1(I + G2k

)S,

Ei’vals of G are (λi − sign(λi))/(λi + sign(λi)).

Hence ρ(G) < 1 and Gk → 0 .

Easy to show

‖Xk+1 − S‖ ≤ 1

2
‖X−1

k ‖‖Xk − S‖2.
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Frechét Derivative

The Fréchet derivative of a matrix function
f : C

n×n → C
n×n at a point X ∈ C

n×n is a linear mapping

LX : C
n×n → C

n×n such that for all E ∈ C
n×n

f(X + E) − f(X) − LX(E) = o(‖E‖).

Example For f(X) = X2 we have

f(X + E) − f(X) = XE + EX + E2,

so LX(E) = XE + EX.
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Newton’s Method for Square Root

Newton’s method: X0 given,

Solve XkEk + EkXk = A − X2
k

Xk+1 = Xk + Ek

}

k = 0, 1, 2, . . .
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Newton’s Method for Square Root

Newton’s method: X0 given,

Solve XkEk + EkXk = A − X2
k

Xk+1 = Xk + Ek

}

k = 0, 1, 2, . . .

Assume AX0 = X0A. Then can show

Xk+1 = 1
2(Xk + X−1

k A). (∗)

For nonsingular A, local quadratic cgce of full Newton
to a primary square root.

To which square root do the iterations converge?

(∗) can converge when full Newton breaks down.

Lack of symmetry in (∗).
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Convergence (Jordan)

Assume X0 = p(A) for some poly p. Let Z−1AZ = J be

Jordan canonical form and set Z−1XkZ = Yk. Then

Yk+1 = 1
2(Yk + Y −1

k J), Y0 = J.

Convergence of diagonal of Yk reduces to scalar case:

Heron: yk+1 = 1
2

(

yk +
λ

yk

)

, y0 = λ.

Can show that off-diagonal converges.

Problem: analysis does not generalize to X0A = AX0!
X0 not necessarily a polynomial in A.
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Convergence (via Sign)

Theorem 1 Let A ∈ C
n×n have no eigenvalues on R

−. The
Newton square root iterates Xk with X0A = AX0 are
related to the Newton sign iterates

Sk+1 =
1

2
(Sk + S−1

k ), S0 = A−1/2X0

by Xk ≡ A1/2Sk . Hence, provided that A−1/2X0 has no

pure imaginary eigenvalues, the Xk are defined and

Xk → A1/2sign(S0) quadratically.

Conclude: Xk → A1/2 if spectrum of A−1/2X0 is in RHP,
e.g., if X0 = A.
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Convergence: Singular Case

Xk+1 = 1
2(Xk + X−1

k A), X0 = A.
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Convergence: Singular Case

Xk+1 = 1
2(Xk + X−1

k A), X0 = A.

Notice that X1 = 1
2(A + I) .

12



Convergence: Singular Case

Xk+1 = 1
2(Xk + X−1

k A), X0 = A.

Notice that X1 = 1
2(A + I) .

Theorem 4 Let singular A ∈ C
n×n have semisimple zero

eigenvalues and nonzero eigenvalues lying off R
−. The

Newton iterates Xk started with X1 = 1
2(I + A) are

nonsingular and converge linearly to A1/2, with

‖Xk − A1/2‖ = O(2−k).

Proof JCF: A = Zdiag(J1, 0)Z−1. Then

X1 = Zdiag((J1 + I)/2, I/2)Z−1, . . . ,

Xk = Zdiag(J
(k)
1 , 2−kI)Z−1.
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Numerical Example

Positive definite Wilson matrix: A =







10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10







, κ2(A) ≈ 2984.

Sign Square root

‖I − Xk‖2 (Xk)11
‖A

1/2−Xk‖2

‖A1/2‖2

(Xk)11

2 2.36e1 8.90e0 5.97e-1 3.36e0

3 1.13e1 4.67e0 1.12e-1 2.57e0

4 5.21e0 2.61e0 5.61e-3 2.40e0

5 2.19e0 1.63e0 4.57e-3 2.40e0

6 7.50e-1 1.20e0 1.22e-1 2.21e0

7 1.61e-1 1.04e0 3.26e0 7.20e0

8 1.11e-2 1.00e0 8.74e1 −1.26e2

9 6.12e-5 1.00e0 2.33e3 3.41e3

10 9.78e-10 1.00e0 1.91e4 2.79e4

11 0 1.00e0 1.97e4 −2.87e4
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History of Newton Sqrt Instability

Instability of Newton noted by Laasonen (1958):

“Newton’s method if carried out indefinitely, is not
stable whenever the ratio of the largest to the
smallest eigenvalue of A exceeds the value 9.”

Described informally by Blackwell (1985) in
Mathematical People: Profiles and Interviews.

Analyzed by H (1986) for diagonalizable A by deriving
“error amplification factors”.
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Stability

Definition 1 The iteration Xk+1 = g(Xk) is stable in a
nbhd of a fixed point X if the Fréchet derivative dgX has
bounded powers.
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Stability

Definition 1 The iteration Xk+1 = g(Xk) is stable in a
nbhd of a fixed point X if the Fréchet derivative dgX has
bounded powers.

Stability is trivial for scalars, since g′(x) = 0!
For matrices, dgX 6= 0.
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Stability

Definition 1 The iteration Xk+1 = g(Xk) is stable in a
nbhd of a fixed point X if the Fréchet derivative dgX has
bounded powers.

Let X0 = X + E0, Ek := Xk − X. Then

Xk+1 = g(Xk) = g(X + Ek) = g(X) + dgX(Ek) + o(‖Ek‖).

So, since g(X) = X,

Ek+1 = dgX(Ek) + o(‖Ek‖).

If ‖dgi
X(E)‖ ≤ c, then recurring leads to

‖Ek‖ ≤ c‖E0‖ + kc · o(‖E0‖).
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Stability of Newton Square Root

g(X) = 1
2(X + X−1A).

dgX(E) = 1
2(E − X−1EX−1A).

Relevant fixed point: X = A1/2.

dgA1/2(E) = 1
2(E − A−1/2EA1/2).

Ei’vals of dgA1/2 are

1

2
(1 − λ

−1/2
i λ

1/2
j ), i, j = 1: n.

For stability we need

maxi,j
1
2

∣
∣
∣1 − λ

−1/2
i λ

1/2
j

∣
∣
∣ < 1.

For hpd A, need κ2(A) < 9.
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Advantages

Uses only Fréchet derivative of g.

No additional assumptions on A.

Perturbation analysis is all in the definition.

General, unifying approach.

Facilitates analysis of families of iterations.
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Stabilizing Newton

Xk+1 = 1
2(Xk + X−1

k A), X0 = A.
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Stabilizing Newton

Xk+1 = 1
2(Xk + X−1

k A), X0 = A.

“Symmetrize”:

Xk+1 =
1

2

(
Xk + A1/2X−1

k A1/2
)
, X0 = A.

Let Yk = A−1/2XkA
−1/2. Then

Xk+1 =
1

2

(
Xk + Y −1

k

)
, X0 = A,

Yk+1 =
1

2

(
Yk + X−1

k

)
, Y0 = I.

The iteration of Denman & Beavers (1976).
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Class of Square Root Iterations

Theorem 5 Suppose the iteration Xk+1 = Xk h(X2
k), X0 = A

converges to sign(A) with order m. If Λ(A) ∩ R
− = ∅ and

Yk+1 = Ykh(ZkYk), Y0 = A,
Zk+1 = h(ZkYk)Zk, Z0 = I,

then Yk → A1/2 and Zk → A−1/2 as k → ∞ with order m.
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Class of Square Root Iterations

Theorem 5 Suppose the iteration Xk+1 = Xk h(X2
k), X0 = A

converges to sign(A) with order m. If Λ(A) ∩ R
− = ∅ and

Yk+1 = Ykh(ZkYk), Y0 = A,
Zk+1 = h(ZkYk)Zk, Z0 = I,

then Yk → A1/2 and Zk → A−1/2 as k → ∞ with order m.

Proof makes use of sign

([
0 A
I 0

])

=

[

0 A1/2

A−1/2 0

]

.

Newton sign leads to DB iteration.

Sign: Xk+1 = Xk · 1
2(I + (X2

k)−1) ≡ Xkh(X2
k), X0 = A.

DB: Yk+1 = 1
2Yk(I + (ZkYk)

−1) = 1
2(Yk + Z−1

k ), Y0 = A.
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Stability of Sign Iterations

Theorem 6 Let Xk+1 = g(Xk) be any superlinearly
convergent iteration for S = sign(X0).

Then dgS(E) = LS(E) = 1
2(E − SES) , where LS is the

Fréchet derivative of the matrix sign function at S.
Hence dgS is idempotent (dgS ◦ dgS = dgS) and the

iteration is stable.

“All” sign iterations are automatically stable.
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Implication

Theorem 7 Consider the iteration function

G(Y, Z) =

[
Y h(ZY )
h(ZY )Z

]

,

where Xk+1 = Xkh(X2
k) is any superlinearly convergent

iteration for sign(X0). Any pair P = (B,B−1) is a fixed point
for G, and the Fréchet derivative of G at P is

dGP (E,F ) = 1
2

[
E − BFB

F − B−1EB−1

]

.

dGP is idempotent and hence the iteration is stable.

In particular: DB iteration is stable.
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Stability is Subtle

G1(Y, Z) =

[

Y h(ZY )

h(ZY )Z

]

gives a stable iteration.

G2(Y, Z) =

[

Y h(ZY )

Zh(ZY )

]

gives an unstable iteration.

Avoid using commutativity when
deriving iterations.
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f (AB) and f (BA)

For any polynomial, Ap(BA) = p(AB)A.

Theorem 8 Let A ∈ C
m×n and B ∈ C

n×m and let f be
defined on the spectra of both AB and BA. Then

Af(BA) = f(AB)A. (∗)

E.g., A(BA)1/2 = (AB)1/2A.

Previous slide:
h(ZY )Z ⇒ Zh(ZY ) ×
h(ZY )Z ⇒ Zh(Y Z)

√

Rule of Thumb
Use (∗) instead of commutativity
when deriving iterations.
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Matrix pth Root

Newton’s method: Xk+1 = 1
p

(
(p − 1)Xk + X1−p

k A
)

24
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Newton Convergence

Theorem 9 (Iannazzo, 2005) For all p > 1, the iteration

xk+1 =
1

p

(
(p − 1)xk + x1−p

k a
)
, x0 = 1,

converges quadratically to a1/p if a belongs to

S := a ∈ { z ∈ C : Re z > 0 and |z| ≤ 1 } ∪ R
+.

Corollary 1 Let A ∈ C
n×n have no eigenvalues on R

−. For
all p > 1, the Newton iteration with X0 = I converges

quadratically to A1/p if all the ei’vals of A belong to S.
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Algorithm for A1/p

Algorithm 1 (Iannazzo, 2005) Given A ∈ C
n×n having no

ei’vals on R
− this alg. computes A1/p.

1 B = A1/2

2 C = B/‖B‖ (any norm)

3 Use Newton to compute Y =

{

C2/p, p even,
(
C1/p

)2
, p odd.

4 X = ‖B‖2/p Y

C satisfies conditions of corollary, since Λ(C) ∈ RHP, and
ρ(C) ≤ ‖C‖ = 1.
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Algorithm for A1/p

Algorithm 2 (Iannazzo, 2005) Given A ∈ C
n×n having no

ei’vals on R
− this alg. computes A1/p.

1 B = A1/2

2 C = B/‖B‖ (any norm)

3 Use Newton to compute Y =

{

C2/p, p even,
(
C1/p

)2
, p odd.

4 X = ‖B‖2/p Y

C satisfies conditions of corollary, since Λ(C) ∈ RHP, and
ρ(C) ≤ ‖C‖ = 1.

Problem: Newton is unstable!
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Algorithm for A1/p

Define Mk = X−p
k A. Then obtain (Iannazzo, 2005)

Xk+1 = Xk

(
(p − 1)I + Mk

p

)

, X0 = I,

Mk+1 =

(
(p − 1)I + Mk

p

)
−p

Mk, M0 = A.

Can show

dG(X,I)(E,F ) =

[
I −X

p

0 0

] [
E
F

]

.

Hence dG(A1/p,I) is idempotent and iteration is stable.

Other iterations for A1/p: Bini, H & Meini (Num. Alg.,
2005).
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f (AB) and f (BA) Again

Recall Af(BA) = f(AB)A.

Theorem 10 Let A ∈ C
m×n, B ∈ C

n×m, with m ≥ n, assume
BA nonsingular, and let f be defined on spectrum of
αIm + AB. Then

f(αIm + AB
︸︷︷︸

m×m

) = f(α)Im + A (BA)−1
(
f(αIn + BA) − f(α)In

)

︸ ︷︷ ︸

n×n

B.

n = 1: f(αI + uv∗) = f(α)I + f [α + v∗u, α]uv∗.

f(x) = x−1: Sherman–Morrison–Woodbury, after

A + UV ∗ = A(I + A−1U · V ∗).
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Conclusions

◮ Stability equivalent to matrix power boundedness.

◮ Better understanding of convergence analysis
(prefer matrix powers to Jordan form.)

◮ Matrix sign function is fundamental and connections
with sqrt can be exploited.

◮ Rule of thumb: don’t use commutativity, use

Af(BA) = f(AB)A.

◮ More to say about structured A: preservation of
structure in f(A) and in iterates Xk (H, Mackey,
Mackey, Tisseur, 2004, 2005—SIMAX).

http://www.ma.man.ac.uk/~higham/
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