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Overview

lterations Xj..1 = g(X}) for computing v/ 4, sign(A), /A
(+ unitary polar factor).

m Avoid Jordan form in convergence proofs.
Reduce to: Does G* tend to zero?

m Can reduce stability to: Is #* bounded?
m Connections: matrix sigh and matrix square root.
= Role of commutativity.

= Rule of thumb for deriving stable iterations.



10 Digit Algorithm

cuberootA2 Cube root of matrix by Newton iteration.
Cf. cuberootA, Ten Digit Algorithms, LNT.

o° oP°

p = 3; % p'th root. p can be arbitrary.
n = 4;
A = rand(n)/sqrt (n) + 3xeye(n)
X = eye(n); M = A;
for i=1:10
W = ((p-1)*eye(n) + M)/p;
X = X*W;
M = W (-p) *M;
end
X
res = norm(A-X"p)/norm(A)
res =

3.4719e-016



Matrix Square Root

m X is a square root of A € C"*" «— X? = A.
m Number of square roots may be zero, finite or infinite.

For A with no eigenvalueson R~ = {z € R: x <0}, denote

by A'/2 the principal square root: unique square root
with spectrum in open right half-plane.



Matrix Sign Function

Let A € C™*™ have no pure imaginary eigenvalues and let
A = ZJZ~! be a Jordan canonical form with

p q
J:Z[{)l })2] A(J1) € LHP,  A(Jy) € RHP.



Matrix Sign Function

Let A € C™*™ have no pure imaginary eigenvalues and let
A = ZJZ~! be a Jordan canonical form with

p q
J:Z[{)l })2] A(J1) € LHP,  A(Jy) € RHP.




Newton’s Method for Sign

Xpr1 = (X + X, 1), Xy = A
Convergence

m Let S :=sign(A), G:= (A - S)(A+S)~L. Then

Xp=(I-G*) (I +G*)S,

Ei'vals of G are (\; — sign()\;))/(A; + sign(\;)).
Hence p(G) <land G* — 0.

m Easy to show

Ly oo
X1 = 51 = 511X Xk = S)%



Frechét Derivative

The Frechet derivative of a matrix function
f.Cvn — C™"™ at a point X € C™**" Is a linear mapping
Ly : C**" — C™*™ such that for all £ ¢ C**"

f(X + E) = f(X) = Lx(E) = of|| E])).

Example For f(X) = X? we have

f(X+E)— f(X)=XE+EX + E?

so Lx(E) = XE + EX.



Newton’s Method for Square Root

Newton’s method: X given,

L v2
Solve Xk + EpXp =A—=Xp | 19
Xk_|_1 — Xk _|_ Ek?



Newton’s Method for Square Root

Newton’s method: X given,

. o 2
Solve XipE + B X = A Xk } k=20,1,2, ...
Xk_|_1 :Xk—|_Ek7

Assume AX, = XyA. Then can show
Xir1 = 5(Xk + X A), (*)

m For nonsingular A, local quadratic cgce of full Newton
to a primary square root.

= To which square root do the iterations converge?
m (x) can converge when full Newton breaks down.
m Lack of symmetry in (x).



Convergence (Jordan)

Assume X, = p(A) for some poly p. Let Z=1AZ = J be
Jordan canonical form and set Z='X,.Z = Y,. Then

YViei=sYe+Y. '), Yo=

m Convergence of diagonal of Y}, reduces to scalar case:

A
Heron: yxy = % (yk + %) : Yo = A.

m Can show that off-diagonal converges.

Problem: analysis does not generalize to XgA = AX)!
Xo not necessarily a polynomial in A.
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Convergence (via Sign)

Theorem 1 Let A € C"*" have no eigenvalues on R~. The
Newton square root iterates X, with XoA = AX, are
related to the Newton sign iterates

1 _ _
Sk = 5(Sk + 5 b, So = A"V2Xx,

by X, = Al/2S, . Hence, provided that A='/2X, has no
pure imaginary eigenvalues, the X, are defined and

X, — AY%sign(Sy) quadratically.

Conclude: X; — A2 if spectrum of A=1/2Xj is in RHP,
e.g., If Xo = A.

11



Convergence: Singular Case

Xpp1=3(Xp + X T4), Xo=A

12



Convergence: Singular Case

Xpp1=3(Xp + X T4), Xo=A

Notice that X; =35(A+1).

DO —
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Convergence: Singular Case

Xpp1=3(Xp + X T4), Xo=A

Notice that X7 = 3(A+ 1) .

Theorem 4 Let singular A € C™"*" have semisimple zero
eigenvalues and nonzero eigenvalues lying off R=. The
Newton iterates X, started with X, = 3(I + A) are

nonsingular and converge linearly to A'/?, with
| Xx — AY2|| = O(27%).

Proof JCF: A = Zdiag(J1,0)Z~!. Then
X1 = Zdiag((J; +1)/2,1/2)Z7 1, ...,
X, = Zdiag(J® 2=k Z-1,

12



Numerical Example

,  ko(A) =~ 2984.

~10 7 8 T
. . . . 5 6 5
Positive definite Wilson matrix: A =
6 10 9
L7 5 9 10.
Sign Square root
JAY2 =X |2
11— Xkl (Xk)n AT, (X%)11
2 2.36¢e1 8.90e0 5.97e-1 3.36e0
3 1.13e1 4.67¢e0 1.12e-1 2.57¢e0
4 5.21e0 2.61e0 5.61e-3 2.40e0
S 2.19e0 1.63e0 4.57e-3 2.40e0
6| 7.50e-1 1.20e0 1.22e-1 2.21e0
7 1.61e-1 1.04e0 3.26e0 7.20e0
8 1.11e-2 1.00e0 8.74e1 —1.26€2
9| 6.12e-5 1.00e0 2.33e3 3.41e3
10 | 9.78e-10 1.00e0 1.91e4 2.79¢e4
11 0 1.00e0 1.97e4 —2.87e4

13



History of Newton Sqrt Instability

m Instability of Newton noted by Laasonen (1958):

“Newton’s method if carried out indefinitely, is not
stable whenever the ratio of the largest to the
smallest eigenvalue of A exceeds the value 9.”

m Described informally by Blackwell (1985) in
Mathematical People: Profiles and Interviews.

m Analyzed by H (1986) for diagonalizable A by deriving
“error amplification factors”.

14



Stability

Definition 1 The iteration X ., = g(X}) is stable in a
nbhd of a fixed point X if the Frechet derivative dg, has
bounded powers.

15



Stability

Definition 1 The iteration X ., = g(X}) is stable in a
nbhd of a fixed point X if the Frechet derivative dg, has
bounded powers.

m Stability is trivial for scalars, since ¢'(x) = 0!
For matrices, dg, # 0.

15



Stability

Definition 1 The iteration X ., = g(X}) is stable in a
nbhd of a fixed point X if the Frechet derivative dg, has
bounded powers.

Let Xo = X + Ey, B, .= X, — X. Then
X1 = 9(Xg) = 9(X + Ej) = g(X) + dgx (Ex) + o(|| Ex|])-
S0, since g(X) = X,
Eky1 = dgx (Ex) + o(|| Ex|l)-

If ||dg’ (E)|| < ¢, then recurring leads to

| Ex|| < cl|Eoll + ke - o || Eol|)

15



Stability of Newton Square Root
B g(X)=3(X + X 1A).
mdgy(E)=3(FE— X 'EXT1A).
= Relevant fixed point: X = A2,
B dgye(E) = 3(E - ATY2EAY?),
m Ei'vals of dg 41,. are

1 .
S(1= ), VNS, dj=1mn.

m For stability we need

~1/2,1/2

;AT <

maxy 4 % 1 —A

m For hpd A, need k2(A) < 9.



Advantages

Uses only Fréchet derivative of g.
No additional assumptions on A.

Perturbation analysis is all in the definition.

General, unifying approach.

Facilitates analysis of families of iterations.

17



Stabilizing Newton

Xi+1 = 5(Xp + X1 4),

X0

A.

18



Stabilizing Newton

Xpp1=3(Xp + X T4), Xo=A

“Symmetrize”:

1 _
Xk_|_1 — i(Xk‘i_Al/QXk 1141/2), X() :A

Let Y, = A=1/2X;, A=1/2, Then

Xppi =5 (Xe+Y ),  Xo=4,

O | — DN —

Yiri== Y+ X.1), Yo = 1.

The iteration of Denman & Beavers (1976).

18



Class of Square Root Iterations

Theorem 5 Suppose the iteration X1 = X h(X?), Xo= A
converges to sign(A) with orderm. If A(A)NR™ =0 and

Vi1 = Yih(ZYs), Yo = A,
Zy1 = W2y Yy) 2, Zo=1,

thenY, — AY? and Z,, — A~1/2 as k — oo with order m.

19



Class of Square Root Iterations

Theorem 5 Suppose the iteration X1 = X h(X?), Xo= A
converges to sign(A) with orderm. If A(A)NR™ =0 and

Vi1 = Yih(ZYs), Yo = A,
Zy1 = W2y Yy) 2, Zo=1,

thenY, — AY? and Z,, — A~1/2 as k — oo with order m.

. 0 A 0  Al/Z2
# Proof makes use of &gn([l OD — [A1/2 g ]

# Newton sign leads to DB iteration.
Sign: Xg1 = Xy - 31 + (XP)™Y) = Xph(X?), Xo=A.
DB: Vi1 = 3Vi(I + (£,Y,) ") =3V + 2, Yo=A
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Stability of Sign Iterations

Theorem 6 Let X1 = g(X;) be any superlinearly
convergent iteration for S = sign(Xy).

Then dg4(F) = Ls(E) = 3(E — SES) , where Lg is the

Frechet derivative of the matrix sign function at S.
Hence dg. is idempotent (dg o dgg = dgg) and the
iteration is stable.

“All” sign iterations are automatically stable.

20



Implication

Theorem 7 Consider the iteration function

Yh(ZY)] |

G, 2) = [h(ZY)Z

where X;.,1 = X, h(X?) is any superlinearly convergent
iteration for sign(Xy). Any pair P = (B, B™!) is a fixed point
for G, and the Frechet derivative of G at P is

E — BFB
F—-Blpp-t|-

dGp(E, F) = % [

dG p Is idempotent and hence the iteration is stable.

m In particular: DB iteration is stable.

21



Stability is Subtle

 YR(ZY) |
1Y, 2) = WZY)Z
gives a stable iteration.
 YR(ZY) |
GQ(Ya Z) — Zh(ZY)

gives an unstable iteration.

Avoid using commutativity when
deriving iterations.

22



f(AB) and f(BA)

For any polynomial, Ap(BA) = p(AB)A.

Theorem 8 Let A ¢ C"*"™ and B € C"*™ and let | be
defined on the spectra of both AB and BA. Then

Af(BA) = f(AB)A.

E.g., A(BA)Y/? = (AB)1/2A.

WZY)Z = Zh(ZY) X
WZY)Z = ZhY Z)

Previous slide:

Rule of Thumb
Use (x) instead of commutativity
when deriving iterations.

23



Matrix pth Root

Newton's method: X1 =% ((p—1)X; + X, PA)

p=2 p=3
|

24
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Newton Convergence

Theorem 9 (lannazzo, 2005) For all p > 1, the iteration
_ 1 l1—p _
Tpil = ]—?((p — D)y, + a), xo =1,

converges quadratically to a'/? if o belongs to
S:=aec{zeC:Rez>0and|z| <1}URT.

Corollary 1 Let A € C™"*™ have no eigenvalues on R~. For
all p > 1, the Newton iteration with X, = I converges

quadratically to A'/? if all the ei’'vals of A belong to S.

26



Algorithm for AY/?

Algorithm 1 (lannazzo, 2005) Given A € C"*" having no
ei'vals on R~ this alg. computes A'/P.

1 B=Al/?
2 C = B/||B| (any norm)
C2/p p even,

Y,

3 Use Newton to compute YV =
P { (CVP)%, podd.

4 X = ||B||*rY

C' satisfies conditions of corollary, since A(C') € RHP, and
p(C) < IO = 1.

27



Algorithm for AY/?

Algorithm 2 (lannazzo, 2005) Given A € C"*" having no
ei'vals on R~ this alg. computes A'/P.

1 B=Al/?
2 C = B/||B| (any norm)
C2/p p even,

Y,

3 Use Newton to compute YV =
P { (CVP)%, podd.

4 X = ||B||*rY

C' satisfies conditions of corollary, since A(C') € RHP, and
p(C) < IO = 1.

Problem: Newton is unstable!

27



Algorithm for AY/?

Define M}, = X, " A. Then obtain (lannazzo, 2005)

— NI+ M
XkH:Xk((p >p+ ‘“) Xo=1.
DI +MN\?
Mk+1:((p T+ k) My, My= A
p
Can show

1Gx.1)(E, F) = [é _o%] [?]

Hence dG 41/» 1) Is idempotent and iteration is stable.

Other iterations for A'/?: Bini, H & Meini (Num. Alg.,
2005).



f(AB) and f(BA) Again

Recall Af(BA) = f(AB)A.

Theorem 10 Let A € C™*", B € C™"*™, with m > n, assume
BA nonsingular, and let f be defined on spectrum of
al,, + AB. Then

flalm + AB) = f(a)I;m + A (BA)~'(f(al, + BA) — f(e)In) B.

\

mxXm v
nxn

n=1: f(al +w*) = f(a)] + fla + v*u, aluv®.

f(x) = 2= ': Sherman—Morrison—Woodbury, after
A+ UV* = A(I + A71U - V™).

29



Conclusions

Stability equivalent to matrix power boundedness.

Better understanding of convergence analysis
(prefer matrix powers to Jordan form.)

Matrix sign function is fundamental and connections
with sgrt can be exploited.

Rule of thumb: don’'t use commutativity, use
Af(BA) = f(AB)A.

More to say about structured A: preservation of
structure in f(A) and in iterates X;. (H, Mackey,
Mackey, Tisseur, 2004, 2005—SIMAX).

http://www.ma.man.ac.uk/~higham/

30


http://www.ma.man.ac.uk/~higham/

	Dundee '85
	Overview
	10 Digit Algorithm
	Matrix Square Root
	Matrix Sign Function
	Matrix Sign Function

	Newton's Method for Sign
	Frech'et Derivative
	Newton's Method for Square Root
	Newton's Method for Square Root

	Convergence (Jordan)
	Convergence (via Sign)
	Convergence: Singular Case
	Convergence: Singular Case
	Convergence: Singular Case

	Numerical Example
	History of Newton Sqrt Instability
	Stability
	Stability
	Stability

	Stability of Newton Square Root
	Advantages
	Stabilizing Newton
	Stabilizing Newton

	Class of Square Root Iterations
	Class of Square Root Iterations

	Stability of Sign Iterations
	Implication
	Stability is Subtle
	$f(AB)$
and $f(BA)$
	Matrix $p$th Root
	Newton Convergence
	Algorithm for $A^{1/p}$
	Algorithm for $A^{1/p}$

	Algorithm for $A^{1/p}$
	$f(AB)$
and $f(BA)$ Again
	Conclusions

