The Scaling and Squaring Method for
the Matrix Exponential Revisited

Nick Higham
Department of Mathematics
University of Manchester

higham@ma.man.ac.uk
http://www.ma.man.ac.uk/~higham/

\

N ||
THE UNIVERSITY
9}” MANCHESTER

Matrix exponential — p. 1/27


http://www.ma.man.ac.uk/~higham/
http://www.ma.man.ac.uk
http://www.man.ac.uk
mailto:higham@ma.man.ac.uk
http://www.ma.man.ac.uk/~higham/

The Matrix Exponential

For A € C"*",
A% A3
A_
e —[—|—A—|—§—|—§—|—

# Difficulties in computing ¢* noted by Stegun &
Abramowitz (1956). They suggested e* = (e*/™)",
lz/n| < 1.

# Moler & Van Loan:

Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later, SIAM Rev., 45 (2003).

» 355 citations on Science Citation Index.

Matrix exponential — p. 2/27



Application: Control Theory

Convert continuous-time system

dx
R
— x(t) + Gu(t),

y = Hx(t) + Ju(t),
to discrete-time state-space system

Try1 = Axg + Buy,
vy = Hxp + Juy.

A=elT B:(/ eFtdt>G,
0

where 7 is the sampling period.
MATLAB Control System Toolbox: ¢2d and d2c.

Have

Mat
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Application: Differential Equations
Nuclear magnetic resonance: Solomon equations
dM/dt = —RM, M(0) =1,

where M (t) = matrix of intensities and R = symmetric

relaxation matrix. NMR workers need to solve both forward
and inverse problems.

Exponential time differencing for stiff systems
(Cox & Matthews, 2002; Kassam & Trefethen, 2003)

y = Ay + F(y,t).

Methods based on exact integration of linear part—require
one accurate evaluation of 4 and e4/2 per integration.
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Quote

Whenever there is too much talk of applications,
one can rest assured that the theory
has very few of them.

— GIAN-CARLO RQOTA, Indiscrete Thoughts (1997)
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Scaling and Squaring Method

To compute X ~ e4:

1. A— A/2° 50 ||A||c = 1
2. rm(A) = [m/m] Padé approximant to e4
3. X = rp(A)%

o Originates with Lawson (1967).

o Ward (1977): algorithm, with rounding error analysis
and a posteriori error bound.

# Moler & Van Loan (1978): give backward error analysis
covering truncation error in Padé approximations,
allowing choice of s and m.
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Padé Approximations r,, to e*

() = pm(2) /g (z) known explicitly:

2m—] Nm!
—J)tJ!

Ms

J=0

and ¢,,(x) = p(—x). The error satisfies

x _ m (m')2 2m+1 2m—+2
e’ —rp(r) = (—1) 2m) (2m+1)' + Oz,
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Choice of Scaling and Padé Degree
Moler & Van Loan (1978) show that if ||A/2%|| < 1/2 then
r(A)25)2 = ATE.
where AE = FA and

Bl _ o (m))?

A = 2m)!(2m + 1)

® For m = 6, the bound is 3.4 x 10716,
® MATLAB's expm takes s so that ||A/2°%|| < 1/2 and

m = 0.
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Choice of Scaling and Padé Degree
Moler & Van Loan (1978) show that if ||A/2%|| < 1/2 then
r(A)25)2 = ATE.
where AE = FA and

Bl _ o (m))?

A = 2m)!(2m + 1)

® For m = 6, the bound is 3.4 x 10716,
® MATLAB's expm takes s so that ||A/2°%|| < 1/2 and

m = 0.

m Why restrict to ||A/2°%|| < 1/27
= Bound (x) Is far from sharp.
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Analysis

Let
G_ATm(A) =]+G=¢

and assume ||G|| < 1. Then

|H|l = [[log(I + G| < > _IIGIV /i = —log(1 — ||G]).

j=1

Hence
rm(A) = efletl = ATH,

Rewrite as
rm(A4/27)% = eATE,

where E = 2°H satisfies

|E]| < =2 log(1 — [[G]).
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Result

Theorem 1 Let
e 2 Ar,(27%A4) =1+ G,

where ||G|| < 1. Then the diagonal Padeé approximant r,,
satisfies
rm(275A)% = ATE

)

where
IE] _ —los(1— |Gl
JA[ = [[275 4]

» Remains to bound ||G|| in terms of ||[27%A]].
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Bounding ||G||

©.@)

plx) =e “rp(r) —1 = Z cix!

1=2m-+1

converges absolutely for |z| < min{ |¢| : ¢ (t) =0} =: vp,.
Hence, with 6 := ||27° A|| < v,

Gl =lp@ A < Y leld’ = f(6). (*)
1=2m+1
Thus [[E]|/]|All < —log(1 — f(6))/0) -

» If only ||A]| known, (x) is optimal bound on ||G]||.

» Moler & Van Loan (1978) bound less sharp;
Dieci & Papini (2000) bound a different error.
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Finding Largest 0

To obtain

o

f(@): Z |C73|(9i7

1=2m-+1
compute ¢; symbolically, sum series in 250 digit arithmetic.

Use zero-finder to determine largest 4, denoted 6,,,, such
that b’err bound < ©w =273~ 1.1 x 10719 (IEEE double).

m 1 2 3 4 5 6 7 8 9 10
0,,, | 3.7e-8 5.3e-4 1.5e-2 8.5e-2 2.5e-1 5.4e-1 9.5e-1 1.5e0 2.1e0 2.8e0

m 11 12 13 14 15 16 17 18 19 20
0, | 3.6e0 4.5e0 5.4e0 6.3e0 7.3e0 8.4e0 9.4e0 1.1el1 1.2e1 1.3e1
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Computational Cost
Efficient scheme for ry:

pg(A) = bgA® + bg A% + by At + by A + bol
+A(b7 A% + b5 A% + b3 A% 4 by 1)
= U+V.
Then ¢gs(A)=U - V.
For m > 12 a different scheme is more efficient.
Number of mat mults =,,, to evaluate r,,,:

m|1 2 3 4 5 6 7 8 9 10

w0 1 2 3 3 4 4 5 5 6
m |11 12 13 14 15 16 17 18 19 20

| 6 6 6 ¢ [ 7 7 8 8 8
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Optimal Algorithm

Recall A — 27%A, s = [logs ||A|| /0] 1T ||A]| > 0., €lse s = 0.
Hence cost of overall algorithm in mat mults is

Tm + 8 = Ty + max ([log, ||A]| — logs 0,1, 0) .

For ||A|| > 6., simplify to C),, = m, — logs 0,,.

m | 1 2 3 4 5 6 / 8 9 10
Cn| 25 12 81 6.6 50 49 41 44 39 45

m| 11 12 13 14 15 16 17 18 19 20
Cn|42 38 36 43 41 39 38 46 45 43
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Optimal Algorithm

Recall A — 27%A, s = [logs ||A|| /0] 1T ||A]| > 0., €lse s = 0.
Hence cost of overall algorithm in mat mults is

Tm + 8 = Ty + max ([log, ||A]| — logs 0,1, 0) .

For ||Al| > 0,,, simplify to Cy, = 7t — 104 Orm.

m | 1 2 3 4 5 6 / 8 9 10
Cn| 25 12 81 6.6 50 49 41 44 39 45

m| 11 12 13 14 15 16 17 18 19 20
Cn|42 38 36 43 41 39 38 46 45 43

» For IEEE single, m = 7 Is optimal.
» For quad prec., m = 17 is optimal.
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Rounding Errors in Evaluating 7,

Can show, improving Ward (1977) bounds,

[m(A) = P ()11 S T lom (A)[l1 ™ (ditto for gy,)

and
/2
lam(A) 7 < &S = {m,
1 — ZizQ ‘dl,em
where e*/2q,, (z) — 1 = 322, dia’

m 1 2 3 4 5 6 7 8 9 10
Em | 1.0e0 1.0e0 1.0e0 1.0e0 1.1e0 1.3e0 1.6e0 2.1e0 3.0e0 4.3e0

m 11 12 13 14 15 16 17 18 19 20
Em | 6.6e0 1.0e1 1.7e1 3.0e1 5.3e1 9.8e1 1.9e2 3.8e2 8.3e2 2.0e3
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Algorithm

Algorithm 1 Evaluate ¢, for A ¢ C"*", using the scaling
and squaring method.

form =1[3579 13|

if || All1 < O,
X =rm(A), return
end
end

A — A/QS with s min integer S.t. HA/ZSH1 < 613~ 54
(s = [loga(||All1/013)1)

X =r13(A) [Increasing ordering]
X «— X? by repeated squaring

» May want to add preprocessing to reduce the norm.
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Comparison with Existing Algorithms

Method m  max |[|27 %Al
Alg 1 13 5.4
Ward (1977) 8 1.0 [0s = 1.5]
MATLAB 7's expm 6 0.5 [0 = 0.54]
Sidje (1998) 6 0.5
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Comparison with Existing Algorithms

Method m  max |[|27 %Al
Alg 1 13 5.4
Ward (1977) 8 1.0 [0s = 1.5]
MATLAB 7's expm 6 0.5 [0 = 0.54]
Sidje (1998) 6 0.5

» ||All; > 1: Alg 1 requires 1-2 fewer mat mults than
Ward, 2—3 fewer than expm.

Alg1 Ward expm Sidje
mults 5 7 8 10

1Al € (2,2.1):

» ||All; < 1: Alg 1 requires up to 3 fewer, and no more,
mat mults than expm and Ward.
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Squaring Phase
» The bound

nu
A% = FUAD < vl AP, =

1l —nu

shows the dangers in matrix squaring.

» Open question: are errors in squaring phase
consistent with conditioning of the problem?

» Our choice of parameters uses 1-5 fewer matrix
squarings than existing implementations, hence has
potential accuracy advantages.
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Numerical Experiment

66 8 x & test matrices: 53 from the function matrix in
Matrix Computation Toolbox and 13 of dimension 2—-10

from e4 literature.
Evaluated 1-norm relative error.

Used Alg 1 and modified version with max Padé degree
a parameter, mpy.x, denoted Exp(mmax) -

Notation:

» expm.: MATLAB 7 scaling & squaring (m = 6).

» funm: MATLAB 7 Schur—Parlett function.

» padm: Sidje (m = 6).

A+E AH2

e €

cond(4) = lim max
(4 —0 |El2<e|Al>  elled]]2
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10

107"

-12

10

107"

107'°

107"°

Different 1.

® O » + 0O
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Different S&S Codes and funm

6 v vV expm
10 + padm
< *x  funm
10°F & o Exp(13) -
: — cond*u
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Performance Profiles

Dolan & Moré (2002) propose a new type of performance
profile.

m Let¢;(p) measure cost or accuracy of solver s € S on
problem p € P.

m Performance ratio

ts(p)
s = . > 1.
P min{ t,(p):c €S} —

m Plot a against

P(rps < aforalls).
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Performance Profile

1 1.5 2 2.5 3 3.5 4 4.5 5
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Indirect Padé Approximation

Najfeld & Havel (1995) suggest using Padé approx. to

m(x) = zcoth(z) = z(e** + 1)(e** — 1)~

for which
0w T(T)+ @
7(x) -

€

For example, [2m/2m| Padé approximant to 7 is

1 8, 4 6, 7 .4, 82

Fa() = 5765 L+ goast T ass® T gt 1

° LS om0 et 4 L2 11
31459425 69615 255 51
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Najfeld & Havel Algorithm

Error in ry,,, has form

7_( B T2m Z d x4m—|—2k Z d,. (x2)2m+k
k=1

= [I7(A) =ram(A)]| < de\\A2!!2m+k =: wam (|| A%]).
k=1

Let A5, be largest 6 such that ws,,,(0) < u.

> A— A/25t with s > 0 s.t. || A2 = ||42]|/225F2 < Gyy,.

» Evaluate 75,,(A) then (7o, + A)(Fapm, — A)~?
» Square result s times.
» m = 8 leads to most efficient algorithm.
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Equivalence

Theorem 2 The [2m/2m] Pade approximant ry,,(z) to
x coth(x) Is related to the [2m + 1/2m + 1| Padé approximant

T2m+1(x) fo e” by

o () = P2m(@/D) /2
T R(e/2) a2

» N & H alg (m = 8) implicitly uses same Padé
approximant to e* as Alg 1 with m = 9.

» N & H derivation bounds error ||7(A) — rom(A)|| for
scaled A. What does this imply about

|4 — (Fam + A)(Fom — A) 1| ?
» 72, — A can be arbitrarily ill conditioned.
» No backward error bound analogous to that for Alg 1.
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Conclusions

% New scaling & squaring implementation up to 1.6 times
faster than expm and significantly more accurate.

% Improvement comes by replacing mathematically
elegant error bound by sharper bound, which is
evaluated symbolically/numerically.

% High degree Padé approximants are humerically
viable. (Error analysis guarantees stable evaluation.)

% Another example where faster = more accurate!

* No example of instability of new alg seen in the tests.
Open question: Is S&S method stable?

% Performance profiles—a useful tool in numerical linear
algebra, not just optimization.
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