
The Scaling and Squaring Method for
the Matrix Exponential Revisited

Nick Higham
Department of Mathematics

University of Manchester

higham@ma.man.ac.uk

http://www.ma.man.ac.uk/~higham/

Matrix exponential – p. 1/27

http://www.ma.man.ac.uk/~higham/
http://www.ma.man.ac.uk
http://www.man.ac.uk
mailto:higham@ma.man.ac.uk
http://www.ma.man.ac.uk/~higham/

The Matrix Exponential

For A ∈ C
n×n,

eA = I + A +
A2

2!
+

A3

3!
+ · · · .

Difficulties in computing ex noted by Stegun &

Abramowitz (1956). They suggested ex = (ex/n)n,
|x/n| < 1.

Moler & Van Loan:
Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later, SIAM Rev., 45 (2003).

◮ 355 citations on Science Citation Index.

Matrix exponential – p. 2/27

Application: Control Theory

Convert continuous-time system

dx

dt
= Fx(t) + Gu(t),

y = Hx(t) + Ju(t),

to discrete-time state-space system

xk+1 = Axk + Buk,

yk = Hxk + Juk.

Have

A = eFτ , B =

(∫ τ

0

eFtdt

)
G,

where τ is the sampling period.
MATLAB Control System Toolbox: c2d and d2c.

Matrix exponential – p. 3/27

Application: Differential Equations

Nuclear magnetic resonance: Solomon equations

dM/dt = −RM, M(0) = I,

where M(t) = matrix of intensities and R = symmetric
relaxation matrix. NMR workers need to solve both forward
and inverse problems.

Exponential time differencing for stiff systems
(Cox & Matthews, 2002; Kassam & Trefethen, 2003)

y′ = Ay + F (y, t).

Methods based on exact integration of linear part—require

one accurate evaluation of ehA and ehA/2 per integration.

Matrix exponential – p. 4/27

Quote

Whenever there is too much talk of applications,
one can rest assured that the theory

has very few of them.

— GIAN-CARLO ROTA, Indiscrete Thoughts (1997)

Matrix exponential – p. 5/27

Scaling and Squaring Method

To compute X ≈ eA:

1. A ← A/2s so ‖A‖∞ ≈ 1

2. rm(A) = [m/m] Padé approximant to eA

3. X = rm(A)2
s

Originates with Lawson (1967).

Ward (1977): algorithm, with rounding error analysis
and a posteriori error bound.

Moler & Van Loan (1978): give backward error analysis
covering truncation error in Padé approximations,
allowing choice of s and m.

Matrix exponential – p. 6/27

Padé Approximations rm to ex

rm(x) = pm(x)/qm(x) known explicitly:

pm(x) =
m∑

j=0

(2m − j)!m!

(2m)! (m − j)!

xj

j!

and qm(x) = pm(−x). The error satisfies

ex − rm(x) = (−1)m (m!)2

(2m)!(2m + 1)!
x2m+1 +O(x2m+2).

Matrix exponential – p. 7/27

Choice of Scaling and Padé Degree

Moler & Van Loan (1978) show that if ‖A/2s‖ ≤ 1/2 then

rm(A/2s)2
s

= eA+E ,

where AE = EA and

‖E‖

‖A‖
≤ 23−2m (m!)2

(2m)!(2m + 1)!
. (∗)

For m = 6, the bound is 3.4 × 10−16.

MATLAB’s expm takes s so that ‖A/2s‖ ≤ 1/2 and
m = 6.

Matrix exponential – p. 8/27

Choice of Scaling and Padé Degree

Moler & Van Loan (1978) show that if ‖A/2s‖ ≤ 1/2 then

rm(A/2s)2
s

= eA+E ,

where AE = EA and

‖E‖

‖A‖
≤ 23−2m (m!)2

(2m)!(2m + 1)!
. (∗)

For m = 6, the bound is 3.4 × 10−16.

MATLAB’s expm takes s so that ‖A/2s‖ ≤ 1/2 and
m = 6.

Why restrict to ‖A/2s‖ ≤ 1/2?

Bound (∗) is far from sharp.

Matrix exponential – p. 8/27

Analysis

Let

e−Arm(A) = I + G = eH

and assume ‖G‖ < 1. Then

‖H‖ = ‖ log(I + G)‖ ≤

∞∑

j=1

‖G‖j/j = − log(1 − ‖G‖).

Hence

rm(A) = eAeH = eA+H .

Rewrite as

rm(A/2s)2
s

= eA+E ,

where E = 2sH satisfies

‖E‖ ≤ −2s log(1 − ‖G‖).

Matrix exponential – p. 9/27

Result

Theorem 1 Let

e−2
−sA rm(2−sA) = I + G,

where ‖G‖ < 1. Then the diagonal Padé approximant rm

satisfies

rm(2−sA)2
s

= eA+E ,

where
‖E‖

‖A‖
≤

− log(1 − ‖G‖)

‖2−sA‖
.

◮ Remains to bound ‖G‖ in terms of ‖2−sA‖.

Matrix exponential – p. 10/27

Bounding ‖G‖

ρ(x) := e−xrm(x) − 1 =
∞∑

i=2m+1

cix
i

converges absolutely for |x| < min{ |t| : qm(t) = 0 } =: νm.

Hence, with θ := ‖2−sA‖ < νm,

‖G‖ = ‖ρ(2−sA)‖ ≤
∞∑

i=2m+1

|ci|θ
i =: f(θ). (∗)

Thus ‖E‖/‖A‖ ≤ − log(1 − f(θ))/θ) .

◮ If only ‖A‖ known, (∗) is optimal bound on ‖G‖.

◮ Moler & Van Loan (1978) bound less sharp;
Dieci & Papini (2000) bound a different error.

Matrix exponential – p. 11/27

Finding Largest θ

To obtain

f(θ) =
∞∑

i=2m+1

|ci|θ
i,

compute ci symbolically, sum series in 250 digit arithmetic.

Use zero-finder to determine largest θ, denoted θm, such

that b’err bound ≤ u = 2−53 ≈ 1.1 × 10−16 (IEEE double).

m 1 2 3 4 5 6 7 8 9 10

θm 3.7e-8 5.3e-4 1.5e-2 8.5e-2 2.5e-1 5.4e-1 9.5e-1 1.5e0 2.1e0 2.8e0

m 11 12 13 14 15 16 17 18 19 20

θm 3.6e0 4.5e0 5.4e0 6.3e0 7.3e0 8.4e0 9.4e0 1.1e1 1.2e1 1.3e1

Matrix exponential – p. 12/27

Computational Cost

Efficient scheme for r8:

p8(A) = b8A
8 + b6A

6 + b4A
4 + b2A

2 + b0I

+A(b7A
6 + b5A

4 + b3A
2 + b1I)

=: U + V.

Then q8(A) = U − V .
For m ≥ 12 a different scheme is more efficient.

Number of mat mults πm to evaluate rm:

m 1 2 3 4 5 6 7 8 9 10

πm 0 1 2 3 3 4 4 5 5 6

m 11 12 13 14 15 16 17 18 19 20

πm 6 6 6 7 7 7 7 8 8 8

Matrix exponential – p. 13/27

Optimal Algorithm

Recall A ← 2−sA, s = ⌈log2 ‖A‖/θm⌉ if ‖A‖ ≥ θm, else s = 0.

Hence cost of overall algorithm in mat mults is

πm + s = πm + max (⌈log2 ‖A‖ − log2 θm⌉ , 0) .

For ‖A‖ ≥ θm simplify to Cm = πm − log2 θm.

m 1 2 3 4 5 6 7 8 9 10

Cm 25 12 8.1 6.6 5.0 4.9 4.1 4.4 3.9 4.5

m 11 12 13 14 15 16 17 18 19 20

Cm 4.2 3.8 3.6 4.3 4.1 3.9 3.8 4.6 4.5 4.3

Matrix exponential – p. 14/27

Optimal Algorithm

Recall A ← 2−sA, s = ⌈log2 ‖A‖/θm⌉ if ‖A‖ ≥ θm, else s = 0.

Hence cost of overall algorithm in mat mults is

πm + s = πm + max (⌈log2 ‖A‖ − log2 θm⌉ , 0) .

For ‖A‖ ≥ θm simplify to Cm = πm − log2 θm.

m 1 2 3 4 5 6 7 8 9 10

Cm 25 12 8.1 6.6 5.0 4.9 4.1 4.4 3.9 4.5

m 11 12 13 14 15 16 17 18 19 20

Cm 4.2 3.8 3.6 4.3 4.1 3.9 3.8 4.6 4.5 4.3

◮ For IEEE single, m = 7 is optimal.

◮ For quad prec., m = 17 is optimal.
Matrix exponential – p. 14/27

Rounding Errors in Evaluating rm

Can show, improving Ward (1977) bounds,

‖pm(A) − p̂m(A)‖1
<
∼ γ̃mn‖pm(A)‖1 eθm (ditto for qm)

and

‖qm(A)−1‖ ≤
eθm/2

1 −
∑∞

i=2
|di|θi

m

=: ξm,

where ex/2qm(x) − 1 =
∑∞

i=2
dix

i.

m 1 2 3 4 5 6 7 8 9 10

ξm 1.0e0 1.0e0 1.0e0 1.0e0 1.1e0 1.3e0 1.6e0 2.1e0 3.0e0 4.3e0

m 11 12 13 14 15 16 17 18 19 20

ξm 6.6e0 1.0e1 1.7e1 3.0e1 5.3e1 9.8e1 1.9e2 3.8e2 8.3e2 2.0e3

Matrix exponential – p. 15/27

Algorithm

Algorithm 1 Evaluate eA, for A ∈ C
n×n, using the scaling

and squaring method.

for m = [3 5 7 9 13]
if ‖A‖1 ≤ θm

X = rm(A), return
end

end
A ← A/2s with s min integer s.t. ‖A/2s‖1 ≤ θ13 ≈ 5.4

(s = ⌈log2(‖A‖1/θ13)⌉)

X = r13(A) [increasing ordering]

X ← X2
s

by repeated squaring

◮ May want to add preprocessing to reduce the norm.

Matrix exponential – p. 16/27

Comparison with Existing Algorithms

Method m max ‖2−sA‖

Alg 1 13 5.4

Ward (1977) 8 1.0 [θ8 = 1.5]

MATLAB 7’s expm 6 0.5 [θ6 = 0.54]

Sidje (1998) 6 0.5

Matrix exponential – p. 17/27

Comparison with Existing Algorithms

Method m max ‖2−sA‖

Alg 1 13 5.4

Ward (1977) 8 1.0 [θ8 = 1.5]

MATLAB 7’s expm 6 0.5 [θ6 = 0.54]

Sidje (1998) 6 0.5

◮ ‖A‖1 > 1: Alg 1 requires 1–2 fewer mat mults than
Ward, 2–3 fewer than expm.

‖A‖1 ∈ (2, 2.1):
Alg 1 Ward expm Sidje

mults 5 7 8 10

◮ ‖A‖1 ≤ 1: Alg 1 requires up to 3 fewer, and no more,
mat mults than expm and Ward.

Matrix exponential – p. 17/27

Squaring Phase

◮ The bound

‖A2 − fl(A2)‖ ≤ γn‖A‖2, γn =
nu

1 − nu
.

shows the dangers in matrix squaring.

◮ Open question: are errors in squaring phase
consistent with conditioning of the problem?

◮ Our choice of parameters uses 1–5 fewer matrix
squarings than existing implementations, hence has
potential accuracy advantages.

Matrix exponential – p. 18/27

Numerical Experiment

◮ 66 8 × 8 test matrices: 53 from the function matrix in
Matrix Computation Toolbox and 13 of dimension 2–10

from eA literature.

◮ Evaluated 1-norm relative error.

◮ Used Alg 1 and modified version with max Padé degree
a parameter, mmax, denoted Exp(mmax).

◮ Notation:

◮ expm: MATLAB 7 scaling & squaring (m = 6).

◮ funm: MATLAB 7 Schur–Parlett function.

◮ padm: Sidje (m = 6).

◮ cond(A) = lim
ǫ→0

max
‖E‖2≤ǫ‖A‖2

‖eA+E − eA‖2

ǫ‖eA‖2

.

Matrix exponential – p. 19/27

Different mmax

0 10 20 30 40 50 60
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

Exp(3)

Exp(5)

Exp(7)
Exp(9)

Exp(13)

cond*u

Matrix exponential – p. 20/27

Different S&S Codes and funm

0 10 20 30 40 50 60

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

expm

padm

funm

Exp(13)

cond*u

Matrix exponential – p. 21/27

Performance Profiles

Dolan & Moré (2002) propose a new type of performance
profile.

Let ts(p) measure cost or accuracy of solver s ∈ S on
problem p ∈ P .

Performance ratio

rp,s :=
ts(p)

min{ tσ(p) : σ ∈ S }
≥ 1.

Plot α against

P (rp,s ≤ α for all s).

Matrix exponential – p. 22/27

Performance Profile

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exp(13)

Exp(9)

padm

funm

expm

α

p

Matrix exponential – p. 23/27

Indirect Padé Approximation

Najfeld & Havel (1995) suggest using Padé approx. to

τ(x) = x coth(x) = x(e2x + 1)(e2x − 1)−1

= 1 +
x2

3 +
x2

5 +
x2

7 + · · ·

,

for which

e2x =
τ(x) + x

τ(x) − x
.

For example, [2m/2m] Padé approximant to τ is

r̃8(x) =
1

765765
x8 + 4

9945
x6 + 7

255
x4 + 8

17
x2 + 1

1

34459425
x8 + 2

69615
x6 + 1

255
x4 + 7

51
x2 + 1

.

Matrix exponential – p. 24/27

Najfeld & Havel Algorithm

Error in r2m has form

τ(x) − r̃2m(x) =
∞∑

k=1

dkx
4m+2k =

∞∑

k=1

dk(x
2)2m+k

⇒ ‖τ(A) − r̃2m(A)‖ ≤

∞∑

k=1

dk‖A
2‖2m+k =: ω2m(‖A2‖).

Let θ2m be largest θ such that ω2m(θ) ≤ u.

◮ Ã ← A/2s+1 with s ≥ 0 s.t. ‖Ã2‖ = ‖A2‖/22s+2 ≤ θ2m.

◮ Evaluate r̃2m(Ã) then (r̃2m + Ã)(r̃2m − Ã)−1.

◮ Square result s times.

◮ m = 8 leads to most efficient algorithm.

Matrix exponential – p. 25/27

Equivalence

Theorem 2 The [2m/2m] Padé approximant r̃2m(x) to
x coth(x) is related to the [2m + 1/2m + 1] Padé approximant
r2m+1(x) to ex by

r2m+1(x) =
r̃2m(x/2) + x/2

r̃2m(x/2) − x/2
.

◮ N & H alg (m = 8) implicitly uses same Padé
approximant to ex as Alg 1 with m = 9.

◮ N & H derivation bounds error ‖τ(A) − r̃2m(A)‖ for
scaled A. What does this imply about

‖e2A − (r̃2m + A)(r̃2m − A)−1‖?

◮ r̃2m − A can be arbitrarily ill conditioned.

◮ No backward error bound analogous to that for Alg 1.

Matrix exponential – p. 26/27

Conclusions

⋆ New scaling & squaring implementation up to 1.6 times
faster than expm and significantly more accurate.

⋆ Improvement comes by replacing mathematically
elegant error bound by sharper bound, which is
evaluated symbolically/numerically.

⋆ High degree Padé approximants are numerically
viable. (Error analysis guarantees stable evaluation.)

⋆ Another example where faster ⇒ more accurate!

⋆ No example of instability of new alg seen in the tests.
Open question: Is S&S method stable?

⋆ Performance profiles—a useful tool in numerical linear
algebra, not just optimization.

Matrix exponential – p. 27/27

	The Matrix Exponential
	Application: Control Theory
	Application: Differential Equations
	Quote
	Scaling and Squaring Method
	Pad'e Approximations r_{m} to e^x
	Choice of Scaling and Pad'e Degree
	Choice of Scaling and Pad'e Degree

	Analysis
	Result
	Bounding $
orm {G}$
	Finding Largest $	h $
	Computational Cost
	Optimal Algorithm
	Optimal Algorithm

	Rounding Errors in Evaluating r_m
	Algorithm
	Comparison with Existing Algorithms
	Comparison with Existing Algorithms

	Squaring Phase
	Numerical Experiment
	Different $mmax $
	Different S&S Codes and mybtt {funm}
	Performance Profiles
	Performance Profile
	Indirect Pad'e Approximation
	Najfeld & Havel Algorithm
	Equivalence
	Conclusions

