
IMA Journal of Numerical Analysis (1992) 12, 1-19

Stability of Methods for Matrix Inversion

JEREMY J. DU CROZ

Numerical Algorithms Group Ltd., Wilkinson House, Jordan Hill Road, Oxford
OX2 8DR, UK

AND

NICHOLAS J. HIGHAM

Department of Mathematics, University of Manchester, Manchester M13 9PL, UK

Dedicated to Professor A. R. Mitchell on the occasion of his 70th Birthday

[Received 21 November 1990 and in revised form 13 May 1991]

Inversion of a triangular matrix can be accomplished in several ways. The
standard methods are characterized by the loop ordering, whether matrix-vector
multiplication, solution of a triangular system, or a rank-1 update is done inside
the outer loop, and whether the method is blocked or unblocked. The numerical
stability properties of these methods are investigated. It is shown that unblocked
methods satisfy pleasing bounds on the left or right residual. However, for one of
the block methods it is necessary to convert a matrix multiplication into the
solution of a multiple right-hand side triangular system in order to have an
acceptable residual bound. The inversion of a full matrix given a factorization
PA = LU is also considered, including the special cases of symmetric indefinite
and symmetric positive definite matrices. Three popular methods are shown to
possess satisfactory residual bounds, subject to a certain requirement on the
implementation, and an attractive new method is described. This work was
motivated by the question of what inversion methods should be used in
LAPACK.

1. Introduction

As Forsythe, Malcolm, & Moler (1977: p. 31) point out, 'In the vast majority of
practical computational problems, it is unnecessary and inadvisable to actually
compute A~\J Nevertheless there are some applications that genuinely require
computation of a matrix inverse (see Bard, 1974; §7.5; McCullagh & Nelder,
1989: p. 342ff; Byers, 1987; Higham, 1986, for example). LAPACK (Bischof et
al., 1988), like LINPACK before it, will include routines for matrix inversion.
LAPACK will support inversion of triangular matrices and of general, symmetric
indefinite, and symmetric positive definite matrices via an LU (or related)
factorization. Each of these matrix inversions can be done in several ways. For
example, in triangular matrix inversion, different loop orderings are possible and
either triangular matrix-vector multiplication, solution of a triangular system, or a
rank-1 update of a rectangular matrix can be employed inside the outer loop. As
a further example, given a factorization PA = LU, two ways to evaluate A~l are
as A~l = U~l x L~l x P, and as the solution to UA~X = ZT1 x P. These methods

O Oriord Unhrcnlty P r a 1992

2 JEREMY J. DU CROZ AND NICHOLAS J. H1GHAM

generally achieve different levels of efficiency on high-performance computers,
and they propagate rounding errors in different ways. The performance issues are
fairly well understood. The purpose of this work is to investigate the numerical
stability properties of the methods, with a view to guiding the choice of inversion
method in LAPACK.

Existing error analysis, such as that in Wilkinson (1961, 1965) and Higham
(1989), is applicable to two of the methods considered here (Method 1 and
Method A). We believe our analysis for the other methods to be new. A
secondary aim of this work is to use matrix inversion as a vehicle for illustrating
some important principles in error analysis. Our strategy is to determine what
sorts of error bounds we can expect to prove, to do the error analysis in a concise
and modular fashion, and then to gain further insight from numerical tests.

The quality of an approximation Y' *=• A~* can be assessed by looking at the
right and left residuals, AY — I and YA—I, and the forward error, Y — A~l.
Suppose we perturb A—*A + AA with \AA\ =£ e\A\, where the absolute value and
the inequality hold componentwise; thus we are making relative perturbations of
size at most e to the elements of A. If Y = (A + AA)'1 then (A + AA)Y =
Y(A + AA) = I, so that

-I\ = \AAY\^e\A\\Y\, (1.1)

-l\ = \YAA\^e\Y\\A\, (1.2)

and, since (A + AA)~l = A'1 - A'1 AAA~l + O(e2),

\A~l - Y| « e\A~x\ \A\ \A-*\ + O(£2). (1.3)

(Note that (1.3) can also be derived from (1.1) or (1.2).) The bounds (1.1)-(1.3)
represent 'ideal' bounds for a computed approximation Y to A'1 if we regard e as
a small multiple of the unit round-off u. We will show that, for triangular matrix
inversion, appropriate methods do indeed achieve (1.1) or (1.2) (but not both)
and (1.3).

We stress that neither (1.1), (1.2), nor (1.3) implies that Y + AY = (A + AA)~l

with | |A4| |»«f \\A\\n and H4YII,.*; e ||Y||., that is, Y need not be close to the
inverse of a matrix near to A, even in the norm sense. Indeed, such a result
would imply that both the left and right residuals are bounded in norm by
(2e + e2) ||/4||oo ||Y|U, and this is not the case for any of the methods we will
consider. See Miller & Spooner (1978: pp. 375-377) and Wilkinson (1961: §26)
for more on this aspect of the stability of matrix inversion.

We will use the following model of floating point arithmetic:

<5), \6\szu, o p = * , / .

We quote the standard result that if LeWx" is lower triangular, then forward
substitution applied to Lx = b produces a computed solution £ that satisfies (see,
for example, Stewart, 1973: pp. 150, 408)

\AL*cHu\L\. (1.4)

STABILITY OF METHODS FOR MATRIX INVERSION 3

Here, and below, we use cn to denote a constant of order n. We are not
concerned with the precise values of the constants in the analysis. (See Wilkinson
(1963: pp. 102, 108) for some comments on the interpretation of the constants.)

To simplify the presentation we introduce a special notation. Let A, e R"1'*'",
i = \,...,k, be matrices such that the product AXA2 ••• Ak is defined and let

Then A(AX, A2,...,Ak) e R"11*"* denotes a matrix bounded according to

\A{AU A2,...,Ak)\^cpu\Ax\ \A2\ - \Ak\ + O(u2).

This notation is chosen so that if C = Q(AX A2 ••• Ak), with the product evaluated
in any order, then

C = AXA2 ••• Ak + A(AX, A2,...,Ak),

as is easily verified. Note also that the matrix AL in (1.4) can be expressed as
A(L), if we define p = nx when k = 1.

We consider the inversion of triangular matrices in Section 2. The inversion of
full matrices is treated in Section 3, and conclusions are given in Section 4.

2. Inverting a triangular matrix

We consider the inversion of a lower triangular matrix LeUnxn, treating
unblocked and blocked methods separately.

2.1 Unblocked Methods

We focus our attention on two ';' methods that compute L"1 a column at a
time. Analogous T and '&' methods exist, which compute L~l row-wise or use
outer products respectively, and we comment on them at the end of the section.
(The names '/', 'j', and 'A:' refer to the outermost loop index, according to the
convention introduced by Dongarra, Gustavson, & Karp (1984), and used in
Golub & Van Loan (1989), to describe the different possible orderings of the
loops.)

The first method computes each column of X = L~l independently, using
conventional forward substitution. We write it as follows, to facilitate comparison
with the second method. We use MATLAB-style indexing notation, as in Golub
& Van Loan (1989).

Method 1
for j = 1: n

Solve L(J + l :n,j + \:n)X(j + l :n,j) = X(j + l : n, j) by forward substi-
tution

end

4 JEREMY J. DU CROZ AND NICHOLAS J. HIGHAM

In BLAS terminology, this method is dominated by n calls to a level 2 BLAS
routine xTRSV (TRiangular SolVe).

The second method computes the columns in the reverse order. On the ;th step
it multiplies by the previously computed inverse L(j + 1: n, j + 1: n)'1 instead of
solving a system with coefficient matrix L(j + 1 : n, j + 1: n).

Method 2
for / = n : — 1: 1

x =l~l

X(J + 1: n, j) = X(j + l:n,j + l: n)L(j + \:n, j)
X(J + l: n, j) = -X/jXU + l:n, j)

end

Method 2 uses n calls to the level 2 BLAS routine xTRMV (TRiangular Matrix
times Vector). On most high-performance machines, xTRMV can be imple-
mented to run faster than xTRSV, so Method 2 is generally preferable to Method
1 from the point of view of efficiency (see the performance figures at the end of
Section 2.2). We now compare the stability of the two methods.

The result (1.4) shows that the /th column of the computed X from Method 1
satisfies

It follows that we have the componentwise residual bound

\LX-I*cnu\L\\X\ (2.1)

and the componentwise forward error bound

\X — L~'| =£ c u\L~1\ \L\ \X\. (2 2)

Since X = L~x + O(u), (2.2) can be written as

\X - L~l\ ascwIL-'l \L\ \L~l\ + O(u2), (2.3)

which is invariant under row and column scaling of L. If we take norms, we
obtain normwise relative error bounds that are either row or column scaling
independent: from (2.3) we have

^-^K^ucoMiL-^O^), (2.4)

where cond (A) = || \A~*\ \A\ ||» is the condition number of Bauer (1966) and
Skeel (1979), and the same bound holds with cond (L~l) replaced by cond (L).

Notice that (2.1) is a bound for the right residual, LX — l. This is because
Method 1 is derived by solving LX = I. Conversely, Method 2 can be derived by
solving XL = /, which suggests that we should look for a bound on the left
residual for this method.

LEMMA 2.1 The computed inverse X from Method 2 satisfies

•\k\ \L\ + O(u2). (2.5)

STABILITY OF METHODS FOR MATRIX INVERSION 5

Proof. The proof is by induction on n, the case n = 1 being trivial. Assume the
result is true for n — 1 and write

L~ly MY X~L ~Yz N\'

where a,/3 e U, y,z e Rn~\ and M,N e R^-D*^-1). Method 2 computes the first
column of X by solving XL = / according to

P = a~\ z = -0Ny.

In floating point arithmetic we obtain

$ = a-1(l + 6), \6*u, 2 =-fifty + A(fi, ft, y).
Thus

f}a=l + 6, 2a + fty = -6fty + aA(fi,ft,y).
This may be written as

By assumption the corresponding inequality holds for the (2 : n, 2 : n) submatrices
and so the result is proved. •

Lemma 2.1 shows that Method 2 has a left residual analogue of the right
residual bound (2.1) for Method 1. From (2.5) we obtain the forward error bound

\X - L~'\ « cnu\X\ \L\ \L~l\ + O(u2), (2.6)

which is essentially the same as (2.2), since X = L~x + O(u).
Since there is in general no reason to choose between a small right residual and

a small left residual, our conclusion is that Methods 1 and 2 have equally good
numerical stability properties. In fact, more is true: the two methods are
'equivalent', in the sense explained in the following result.

LEMMA 2.2 Let Le fR"*" be a lower triangular matrix and let J e Rnxn be the
exchange matrix, that is, the matrix obtained by reversing the order of the columns
of the identity matrix. Suppose that in Method 1 the triangular solves use
multiplication by the reciprocals of the diagonal elements rather than division by
these elements (thus the only divisions in Method 1 are those to form the
reciprocals in the first place). Then Method 2 applied to L is equivalent to Method
1 applied to JLTJ, in the sense that exactly the same arithmetic operations are
performed, although possibly in a different order.

Proof. Instead of proving the result we will simply verify it for n = 3. We have

"/33

L=JLTJ= ii2 l22

2̂1 MlJ

6 JEREMY J. DU CROZ AND NICHOLAS J. HIGHAM

Method 1 computes the first column of L~x as

On its first two stages Method 2 computes N = L(2 : 3,2 : 3)"1 as

'22'33«32 '33

Then it obtains the first column of L~l via

31
H . (2.9)
/ 3 J

It is easy to see from (2.7), (2.8), and (2.9) that the same algebraic expressions
are used to produce £"'(3, 1) and £~'(3, 1), and L~\2, 1) and L~'(3, 2) =
N(2,l). a

Lemma 2.2 implies that Method 2 satisfies the same residual bound as Method
1, modulo the L-+JLTJ transformation, and so provides an alternative derivation
of (2.5) from (2.1). Another way to express Lemma 2.2 is to say that there exist
implementations of Methods 1 and 2 such that Method 2 applied to L yields
identical rounding errors to Method 1 applied to JLTJ. If the reciprocation
assumption in Lemma 2.2 does not hold, or if we do not specify whether the
column scaling should precede or follow the level 2 BLAS operation in Methods 1
and 2, then the methods will in'general sustain different rounding errors but will
satisfy the same residual bounds (modulo the transformation). More generally, it
can be shown that all three i, j , and k inversion variants that can be derived from
the equations LX = I produce identical rounding errors under suitable implemen-
tations, and all satisfy the same right residual bound; likewise, the three variants
corresponding to the equation XL = / all satisfy the same left residual bound. The
LEMPACK routine xTRDI uses a k variant derived from XL.= I; the LINPACK
routines xGEDI and xPODI contain analogous code for inverting an upper
triangular matrix (but Dongarra et al. (1979: Chs. 1 and 3) describe a different
variant from the one used in the code).

2.2 Block Methods

Let the lower triangular matrix L e R"x" be partitioned in block form as

Ln

Li\ L22
L =

.'-'NX '-'NN-

(2.10)

where we place no restrictions on the block sizes, other than to require the
diagonal blocks to be square. The most natural block generalizations of Methods
1 and 2 are as follows. Here, we use the notation Lp.qr.j to denote the submatrix
comprising the intersection of block rows p to q and block columns r to s of L.

STABILITY OF METHODS FOR MATRIX INVERSION

Method IB
for ; = 1 : N

Xu = L]Jl (by Method 1)

Solve Lj+i..Nj+i:NXj+i:Nj = Xj+ixNj by forward substitution
end

Method 2B
for j = N:-l A

Xu = L]jx (by Method 2)

end
One can argue that Method IB carries out the same arithmetic operations as

Method 1, although possibly in a different order, and that it therefore satisfies the
same error bound (2.1). For completeness, we give a direct proof.

LEMMA 2.3 The computed inverse X from Method IB satisfies

\LX-I\^cnu\L\\X\ + O(u2). (2.11)

Proof. Equating block columns in (2.11), we obtain the N independent
inequalities

\LX1:Nj-IUNj\^cnu\L\\X1:NJ\ + O(u2), j=l,...,N. (2.12)

It suffices to verify the inequality with j = 1. Write

L = [r
where LXX,XXX e RrXr and L n is the (1,1) block in the partitioning of (2.10). Xxx

is computed by Method 1 and so, from (2.1),

\LXXXXX - I\^cru \LXX\ \XXX\ = cru(\L\ l*l)i>- (2.13)

X2i is computed by forming T = —L^XX^ and solving L^A^i = T. The computed
X2i satisfies

L22X21 + A(Ln, X2i) = -L2iXn + A(L2i, Xn).
Hence

\L2lkxx + LnXri\ « cnu(\L2i\ l^nl + 1^1 1**1) + O(u2)

= cnu(|L| \X\)21 + O(u2). (2.14)

Together, (2.13) and (2.14) are equivalent to (2.11) with ; = 1, as required. •

We can attempt a similar analysis for Method 2B. With the same notation as
above, Xn is computed by Method 2, so that

\XnLu - / | « cru \Xn\ \Ln\ + O(u2) = c,u(\X\ \L\)U + O(u2), (2.15)

and X2X is computed as X2X = -X^L^Xx^. Thus

X2X = -X22L2XXU + A{X-a, L^x, Xxx). (2.16)

8 JEREMY J. DU CROZ AND NICHOLAS J. HIGHAM

To bound the left residual we have to post-multiply by L n and use (2.15):

XnLu + ^22^2l(' + 4 (^ n , Ln)) =

This leads to a bound of the form

\X21LU

which would be of the desired form in (2.5) if it were not for the factor | ^ u | \LU\.
This analysis suggests that the left residual is not guaranteed to be small.

This difficulty with the analysis of Method 2B can be overcome by modifying
the method so that instead of multiplying by Xu we perform a solve with Ly. This
gives the following variation:

Method 2C
For j = N: - 1 : 1

Xu = Lj;x (by Method 2)
•^j+l-.N.I = Xj+iiNJ+l-.N^i+l-.N./
Solve Xj+i-^jLjj = — Xj+\.N]

end

For this method, the analogue of (2.16) is

X2\LU + A(X2U ^n) = -X-nLix + /4(^22, ^21).

which yields

\X2lLu + XnUi\ « cnu(]X2,\ |Ln | + \Xn\ IL2.I) + O(u\

Hence we have the following result.

LEMMA 2.4 The computed inverse X from Method 2C satisfies

In summary, block versions of Methods 1 and 2 are available that have the
same residual bounds as the point methods. However, in general, there is no
guarantee that stability properties remain unchanged when we convert a point
method to block form, as shown by Method 2B.

The analysis in this section can be modified to cater for the possibility that
matrix multiplication and solution of a multiple right-hand side triangular system
are done by 'fast' techniques, for example ones based on Strassen's method
(Higham, 1990a). The appropriate changes to Lemmas 2.3 and 2.4 are to replace
the absolute values by norms and to modify the constants. See Demmel &
Higham (1990) for details of this type of analysis.

Finally, in Table 2.1 we present some performance figures for inversion of a
triangular matrix on a Cray 2. These clearly illustrate the possible gains in
efficiency from using block methods, and also the advantage of Method 2 over
Method 1. For comparison, the performance of a A: variant is also shown (both k
variants run at the same rate). The performance characteristics of the i variants
are similar to those of the / variants, except that, since they are row-oriented
rather than column-oriented, they are liable to be slowed down by memory-bank
conflicts, page-thrashing, or cache-missing.

STABILITY OF METHODS FOR MATRIX INVERSION

TABLE 2.1
Mflop rates for inverting a lower triangular matrix on a Cray 2

Unblocked:

Blocked:
(block size = 64)

Method 1
Method 2
k variant
Method IB
Method 2C
k variant

n = 128

95
114
114
125
129
148

n=256

162
211
157
246
269
263

n = 512

231
289
178
348
378
344

n = 1024

283
330
191
405
428
383

2.3 Numerical Experiments

In this section we describe some numerical experiments that provide further
insight into the stability of the methods analysed above. The experiments were
performed in MATLAB, which has a unit round-off u~2.2 x 10"16. We
simulated single precision arithmetic of unit round-off uSP = 2~23 =» 1.2 x 10~7 by
rounding the result of every arithmetic operation to 23 significant bits. We regard
the computed 'double precision inverse' as being exact when computing forward
errors.

One of the main aims of the experiments is to determine the behaviour of those
left or right residuals for which we do not have bounds. If we find a numerical
example where a residual is large then we are assured that it is not possible to
obtain a small bound through rounding error analysis.

An important point to stress is that large residuals are hard to find! The
examples we present were found after careful searching. We had to look at very
ill-conditioned matrices to find interesting behaviour. Our experience ties in with
the accepted fact that 'The solutions of triangular systems are usually computed
to high accuracy' (Stewart, 1973: p. 150)—see Higham (1989) for an investigation
of this phenomenon.

We present numerical results in Tables 2.2 and 2.3. For each method and
matrix we tabulate left and right componentwise and norm wise relative residuals,

TABLE 2.2
L = qr(vand(15))T.
*„(£) = 2-18 E12
cond (L) = 3-62 El l , cond (IT1) = 2-33E7

Method 1
left residual
right residual
relative error

Method 2
left residual
right residual
relative error

Comp'wise

2-99 E-4
8-35 E-8
7-54 E-2

116E-7
5-61E-5
307 E-2

Norm wise

306 E-5
2-23 E-13
5-05 E-4

201 E-9
7-50 E-ll
8-12 EA

10 JEREMY J. DU CROZ AND NICHOLAS J. HIGHAM

TABLE 2.3
L = tril (rand (10))8.
r_(L) = 8-67 E12
cond (L) = 3-41 E12, cond (ZT1) = 2-28 El l

Method IB
left residual
right residual
relative error

Method 2B
left residual
right residual
relative error

Method 2C
left residual
right residual
relative error

Comp'wise

1-12 E-2
113E-7
1-88 E-1

516 E-2
7-54 E-2
1-55 El

9-58 E-8
7-50 E-2
3-91 E-1

Norm wise

3-47 E-3
118E-9
4-49 E-2

2-70 E-3
107 E-3
105 E0

1-60 E-8
5-83 E^t
306 E-2

which in the 'right' case are given by

and

respectively. We also report the norm wise relative error

ill (2.17)

(2.18)

and the componentwise relative error (for which we have no theoretical bounds)

e i l L - ' - ^ l s s e l L - 1 ! } . (2.19)

The reason for looking at the normwise quantities is that they may be small when
the corresponding componentwise ones are large.

The matrix L in Table 2.2 is the transpose of the upper triangular QR factor of
the 15 x 15 Vandennonde matrix V = (a/"1), where the ay are equally spaced on
[0,1]. We see that (2.1) is satisfied for Method 1 and (2.5) for Method 2, but not
vice versa. It is interesting to note that both the normwise relative errors are
three orders of magnitude smaller than the upper bound in (2.4).

For Table 2.3 we used a 10 x 10 matrix L generated as the eighth power of a
random lower triangular matrix with elements from the normal (0,1) distribution.
(This matrix is generated in MATLAB by the statements rand ('normal'), rand
('seed', 71), L = tril (rand (10))*8.) For each block method we used a fixed
block size of 2. Table 2.3 confirms Lemmas 2.3 and 2.4. It also shows that both
residuals can be large simultaneously for Method 2B; therefore the method must
be regarded as unstable when the block size exceeds 1.

STABILITY OF METHODS FOR MATRIX INVERSION 11

3. Inverting a fall matrix

In this section we consider four methods for inverting a full matrix A e U"xn

given an LU factorization computed by Gaussian elimination with partial pivoting
(GEPP). We assume, without loss of generality, that there are no row
interchanges. Recall that the computed LU factors L and U satisfy (see, for
example, Higham, 1990b)

LU = A + E, \E\^cnu\L\\U\. (3.1)

3.1 Method A

Perhaps the most frequently described method for computing X = A~l is the
following one.

Method A
for ;' = 1: n

Solve Ax/ = ey

end

Compared to the methods to be described below, Method A has the
disadvantages of requiring more temporary storage and of not having a
convenient block version. However, it is simple to analyse. Using (3.1) and (1.4)
we find that

(A + AAM = ej, \AAt\ « c'nu \L\ \U\ + O(u2),
and so

\AX-I\^c'nu\L\\U\\X\ + O(u2). (3.2)

This bound departs from the form (1.1) only in that \A\ is replaced by its upper
bound \L\ \U\ + O(u). The forward error bound corresponding to (3.2) is

| * - A~l\ « c'nu \A~l\ \L\ \U\ | * | + O(u2). (3.3)

3.2 Method B

Next, we consider the method used in LINPACK's routine xGEDI (Dongarra
etai, 1979: Ch. 1).

Method B Compute U~l and then solve for X the equation XL = U~x.

To analyse this method we will assume that U~l is computed by an analogue of
Method 2 or 2C for upper triangular matrices that obtains the columns of U~l in
the order 1 to n. Then the computed inverse Xv = U~l will satisfy the residual
bound

\XuU-I\^cnu\Xv\\U\ + O(u2).

We also assume that the triangular solve from the right with L is done by

12 JEREMY J. DU CROZ AND NICHOLAS J. HIGHAM

backward substitution. The computed X therefore satisfies

XL = Xu + A(X, L)
and so

X(A + E) = XLU = XUU + A(X, L)U.

This leads to the residual bound

\XA -I\ 'Scudl/"1! \U\ + 2\X\ \L\ \U\) + O(u2)

* O(U
2), (3.4)

which is the left residual analogue of (3.2). From (3.4) we obtain the forward
error bound

\X-A-l\^c'nu \X\ \L\ \U\ \A~l\ + O(u2).

Note that Methods A and B are equivalent, in the sense that Method A solves
for X the equation LUX = I while Method B solves XLU = I. Thus the two
methods carry out analogous operations but in different orders. It follows that the
methods must satisfy analogous residual bounds, and so (3.4) can be deduced
from (3.2).

We mention in passing that the LINPACK manual (Dongarra et al., 1979: p.
1.20) states that for Method B a bound holds of the form

\\AX-I\\^dnu\\A\\\\X\\.

This is incorrect, although counterexamples are rare (one is given in Table 3.2); it
is the left residual that is bounded this way, as follows from (3.4).

3.3 Method C

The next method that we consider appears to be new. It solves the equation
UXL = I, computing X a partial row and column at a time. To derive the method
partition

«l L-\l °1 „_[«.. ««l
j ' L-[i2i z j ' ""LO uj'x2l x

where the (1,1) blocks are scalars, and assume that the trailing submatrix X22 is
already known. Then the rest of X is computed according to

The method can also be derived by forming the product X = LT1 x L~l using the
representation of L and U as a product of elementary matrices (and diagonal
matrices in the case of U). In detail the method is as follows.

STABILITY OF METHODS FOR MATRIX INVERSION 13

Method C.
for it =/i : - 1 : 1

X(k + 1 : n, k) = -X(k + 1: n, k + 1: n)L(* + 1 : n, k)
X(k, k + l:n) = -U(k, k + 1: *)*(*: + 1: n, k + 1: n)/uw

*** = 1/"** - *(*:, A: + 1: n)L{k + l:n,k)
end

The method can be implemented so that X overwrites L and U, with the aid of
a work vector of length n (or a work array to hold a block row or column in the
block case). Because most of the work is performed by matrix-vector (or
matrix-matrix) multiplication Method C is likely to be the fastest of those
considered in this section on many machines. (Some performance figures are
given at the end of the section.)

A straightforward error analysis of Method C shows that the computed X
satisfies

\UXL-I\^cnu\U\\X\\L\ + O(u2). (3.5)

We will refer to UXL — I as a 'mixed residual'. From (3.5) we can obtain bounds
on the left and right residual that are weaker than those in (3.4) and (3.2) by a
factor \LJ~l\ \U\ on the left or \L\ \L~l\ on the right, respectively. We also obtain
from (3.5) the forward error bound

\X-A~l\^cnu \U~X\ \U\ \Jt\ \L\ \L-'\ + O(u2),

which is (3.3) with l^"1! replaced by its upper bound \U~l\ \L~l\ + O{u) and the
factors reordered.

The LINPACK routine xSIDI uses what is essentially a special case of Method
C. This routine inverts a symmetric indefinite matrix A e R"x/t factored

A = UDU\ U=UnUn_1 •••£/„

by forming the product

A-^U^-U^D-'UT'-U-K

Here, D = DJ is a block diagonal matrix with diagonal blocks of order 1 or 2, and
Uk is a matrix differing from the identity above the diagonal in s adjacent
columns, where s = 1 or 2; we have ignored the permutations required by the
pivoting strategy. Analogously to (3.5) a residual bound holds of the form

\UTXU-Xo\^cnu \UT\ \X\ \U\ + O(u2),

where XD is the computed inverse of D. Multiplying on the left by D, and using a
bound for the left residual of XD, we obtain

\DUTXU -1\ ^ cnu(\D\ \UT\ \X\ \U\ + \D\ \XD\) + O(u2).

3.4 Method D

The next method has been used in preliminary versions of the LAPACK
routine xGETRI.

14 JEREMY J. DU CROZ AND NICHOLAS J. H1GHAM

Method D Compute L"1 and IT1 and then form A~x = IT 1 x L"1.

The advantage of this method is that no extra workspace is needed; U~x and
L~' can overwrite U and L, and can then be overwritten by their product which is
formed by steps analogous to those of LU factorization.

To analyse Method D we will assume initially that L~l is computed by Method
2 (or Method 2C) and, as for Method B above, that U~l is computed by an
analogue of Method 2 or 2C for upper triangular matrices. We have

XJ. (3.6)

Since A=LU-E,

XA = XVXL(LU -E) + A(XV, XL)A

= XVX^LU - XUX^E + A(XU, XJA. (3.7)

Rewriting the first term of the right-hand side using X^L = I + A(XL, L), and
similarly for U, we obtain

XA-I= A{XV, U) + Xv A(XL, L)U - XVX^E + A(XV, XL)A, (3.8)

and so

\XA -1\ « c'MlU-'l \U\ + 2\U~l\ \L~l\ \L\ \U\ + It/"1! IL"1! \A\) + O(u2)

«c'nu If/"1! \L~l\ \L\ \U\ + O(u2). (3.9)

This bound is weaker than (3.4) to the extent that \X\^\U~1\\L~1\ +O(u).
Note, however, that the term A(Xv,Xi)A in the residual (3.8) is an unavoidable
consequence of forming XVXL, and so the bound (3.9) is essentially the best
possible.

The analysis above assumes that XL and Xv both have small left residuals. If
they both have small right residuals, as when they are computed using Method 1,
then it is easy to see that a bound analogous to (3.9) holds for the right residual
AX — /. If AL has a small left residual and Xv has a small right residual (or vice
versa) then it does not seem possible to derive a bound of the form (3.9).
However, we have

\XLL -I\ = \L~\LXt, - I)L\ « \L-*\ \LXL -1\ \L\, (3.10)

and since L is unit lower triangular with \liS\ « 1, we have \{L~l)tl\ ^2"~l, which
places a bound on how much the left and right residuals of XL can differ.
Furthermore, since the matrices L from GEPP tend to be well-conditioned
(tzai(L)«n2''~l), and since our numerical experience is that large residuals tend
to occur only for ill-conditioned matrices, we would expect the left and right
residuals of XL almost always to be of similar size. We conclude that even in the
'conflicting residuals' case Method D will, in practice, usually satisfy (3.9) or its
right residual counterpart, according to whether Xu has a small left or right
residual respectively. Similar comments apply to Method B when t/"1 is
computed by a method yielding a small right residual.

These considerations are particularly pertinent when we consider Method D

STABILITY OF METHODS FOR MATRIX INVERSION 15

specialized to symmetric positive definite matrices and the Cholesky factorization
A = RTR. Now A'1 is obtained by computing XR = R~l and then forming
A~l = XRXR; this is the method used in the UNPACK routine xPODI
(Dongarra el al., 1979: Ch. 3). If XR has a small right residual then XR has a
small left residual, so in this application we naturally encounter conflicting
residuals. Fortunately, the symmetry and definiteness of the problem help us to
obtain a satisfactory residual bound. The analysis parallels the derivation of (3.9),
so it suffices to show how to treat the term XRXRRTR (cf. (3.7)), where R now
denotes the computed Cholesky factor. Assuming RXR = I + A(R, XR), and
using (3.10) with L replaced by R, we have

XRXT
RRTR = XR(l + A(R, X^R

= I + F + XR A(R, XR)TR, \F\ « \R~l\ \A(R, XR)\ \R\,

= 1 + G,

\G\ «£ cuQR-1] \R\ IK"1! |/?| + \R~l\ \R~T\ \RT\ \R\) + O(u2).

From the inequality || |B| | |2«Vn ||fl||2 for BeR"Xn, together with \\A\\2 =
\\R\\l + O{u), it follows that

and thus overall we have a bound of the form

| | ^ 4 - / | | 2 « d n u | | ^ | | 2 | | ^ | | 2 + O(u2).

Since X and A are symmetric, the same bound holds for the right residual.
Returning to Method D for general matrices, we could obtain a forward error

bound from (3.9), but a better one can be derived directly. We have, using (3.6)
and (2.6),

X = (IT1 + AV)(L-1 + 4L) + A{U~\ L~l) + O(u2),
where

\AV\ ^cnu It/"1! \U\ It/"1! + O(u2), | 4 J sscu IL"1! \L\ \L~*\ + O(u2).

Hence, using (3.1),

|^-i4"1 |«c,,M(|i4~1 | \L\ \U\ \A~l\ + | t / - ' | IL"1! \L\ \L~l\

+ It/"1! \U\ It/"1! \L~l\ + It/"1! |L-! |) + O(u2).

This bound is broadly similar to (3.3).

3.5 Numerical Results

In terms of the above error bounds, there is little to choose between Methods
A, B, C, and D. We have run extensive numerical tests in MATLAB, evaluating
the same residuals and forward errors as in Section 2 (with L replaced by A in
(2.17)-(2.19)). Thus, for example, the left componentwise and normwise
residuals are given by

min{e:\XA-I\^e\X\\A\} and H^4"711"

1 6 JEREMY J. DU CROZ AND NICHOLAS J. HIGHAM

TABLE 3.1
A = augment (rand (3)).
*„(/!) = 9-38 El
cond (A) = 4-00 El , cond (A'1) = 3-33 El

Method A
left residual
right residual
relative error

Method B
left residual
right residual
relative error

Method C
left residual
right residual
relative error

Method D
left residual
right residual
relative error

Comp'wise

617 E-1
806 E-1
2-76 E8

100 EO
100 E0
119E8

100 E0
806 E-1
6-43 E7

100 E0
100 E0
1-26 E8

Norm wise

1-18 E-8
1-42 E-8
9-50 E-8

1-58 E-8
2-26 E-8
1-22 E-7

1-58 E-8
2-23 E-8
1-22 E-7

2-57 E-8
2-13 E-8
9-83 E-8

In Methods B and D we used Method 2 to compute L l and U '. No significant
difference of behaviour among the methods was observed. However, we make
the following observations.

(1) The componentwise relative residuals can be large, as illustrated in Table
3.1, where

A =

with B a random 3 x 3 matrix with elements from the normal (0,1)
distribution. The bounds of this section do not guarantee small com-
ponentwise relative residuals. One reason is that \L\ \U\ may have nonzeros
where A has zeros, and so, for example, the right-hand side of (3.2) is not
bounded by a multiple of \A\ \%\.

(2) Despite the observation in (1), we found that for all three methods both
the left and right componentwise relative residuals are frequently at the
unit round-off level, and the normwise relative residuals are almost
invariably at this level. An exceptional example is shown in Table 3.2.
Here A= LU, where U is the transpose of the matrix used in Table 2.3
and L is the lower triangular factor from GEPP on a random matrix with
elements from the normal (0,1) distribution. In this example each method
has a large normwise left or right residual.

Table 3.3 illustrates the effect of conflicting residuals. For the same matrix as in
Table 3.2 we used Methods B and D with L~l and U~l computed by all possible
combinations of Methods 1 and 2. The results confirm our prediction above that

STABILITY OF METHODS FOR MATRIX INVERSION

TABLE 3.2
A = LU with special U.
*_(/!)= 1-07 E9
cond (A) = 5-58 E8, cond (A'1) = 4-24 E8

17

Method A
left residual
right residual
relative error

Method B
left residual
right residual
relative error

Method C
left residual
right residual
relative error

Method D
left residual
right residual
relative error

Comp'wise

9-37 E-2
1-55 E-7
4-64 E2

8-62 E-8
6-57 E-3
4-64 E2

1-83 E-2
2-08 E-7
4-64 E2

1-41 E-7
6-57 E-3
4-64 E2

Norm wise

7-88 E-3
808 E-9
1-59 E0

2-26 E-8
1-13 E-3
1-59 E0

2-24 E-4
1-29 E-8
1-59 E0

4-15 E-8
1-13 E-3
1-59 E0

in practice it is the mode of computation of U 1 that determines whether the left
or right residual of the computed A~* is small.

Since all four methods have similar stability properties, the choice of method
for LAPACK can be made on other grounds, namely performance and the
amount of storage required. Method A has been ruled out because it does not
allow the computed inverse to overwrite the LU factors. Although Method D has
the advantage of not requiring any extra working storage, its performance is
significantly slower on some machines than Methods B or C, because it uses a
smaller average vector length for vector operations. In Table 3.4 we give some
performance figures for a Cray 2, covering both blocked and unblocked forms of
all three methods. A similar performance pattern is observed on an IBM 3090
VF, except that on that machine Method B is slightly faster than Method C.

TABLE 3.3
Normwise residuals

Method B
Method B
Method D
Method D
Method D
Method D

Small left
residual

U~x

LT\ U~l

L-1

IT '

Small right
residual

IT1

£/-•

L~\ U-'

Left
residual

2-26 E-8
1-30 E-5
415 E-8
1-30 E-5
303 E-8
1-30 E-5

Right
residual

1-13 E-3
1-50 E-8
113 E-3
1-52 E-8
113 E-3
1.55 E-8

18 JEREMY J. DU CROZ AND NICHOLAS J. HIGHAM

TABLE 3.4
Mflop rates for inverting a full matrix on a Cray 2

Unblocked

Blocked
(block size = 64)

Method B
Method C
Method D
Method B
Method C
Method D

n = 64

118
125
70

142
144
70

,, = 128

229
235
166
259
264
178

« = 256

310
314
267
353
363
306

n =512

347
351
329
406
415
390

Although the blocked forms of Methods B and C require workspace to hold one
block of columns, this is no more than many other block algorithms used in
LAPACK, and is not considered a serious disadvantage. There is little to choose
between Methods B and C; in the end Method B has been selected for the
LAPACK routine xGETRI because it satisfies slightly cleaner error bounds, and
because it has the virtue of tradition, being the method used in LINPACK.

4. Condusioiis

Our conclusions are mainly positive ones. All but one of the methods
considered here possess good enough error bounds that they are worthy
contenders for practical use. The exception is the block method 2B for inverting a
triangular matrix, which is unstable when the block size exceeds 1.

Two general points arising from this work are worth emphasizing, because they
do not seem to be well known. First, for most of the inversion methods
considered here only one of the left and right residuals is guaranteed to be small;
which one depends on whether the method is derived by solving A X = / or XA = /.
Second, when a general matrix is inverted via an LU factorization, the best form
of residual bound holds only if the methods used for the 'L-inversion' and the
'[/-inversion' satisfy residual bounds of the same parity—both methods must have
a small left residual or both must have a small right residual.

Finally, we wish to stress that all the analysis here pertains to matrix inversion
alone. It is usually the case that when a computed inverse is used as part of a
larger computation the stability properties are less favourable, and this is one
reason why matrix inversion is generally discouraged. For a simple example, let L
be the matrix of Table 2.2, x=\{\, 1,..., 1)T, and b := Lx. We solved Lx = b in
double precision in MATLAB by forward substitution and by forming x =
L~l x b, where L~l was computed by Method 1. For both computed solutions £
we evaluated the normwise relative residual 77 = \\LJt - b\\J(\\L\\oo P I U + II&IL).
We found r/ = 715 X 10~17 for forward substitution and t] = 6-28 x 10"12 for the
inversion-based method, revealing a difference in stability of five orders of
magnitude.

STABILITY OF METHODS FOR MATRIX INVERSION 1 9

REFERENCES

BARD, Y. 1974 Nonlinear Parameter Estimation. Academic Press.
BAUER, F. L. 1966 Genauigkeitsfragen bei der Losung linearer .Gleichungssysteme. Z.

Angew. Math. Mech. 46, 409-^21.
BISCHOF, C. H., DEMMEL, J. W., DONOARRA, J. J., DU CROZ, J. J., GREENBAUM, A.,

HAMMARUNO, S. J., & SORENSEN, D. C. 1988 Provisional contents. LAPACK
Working Note #5, Report ANL-88-38, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL.

BYERS, R. 1987 Solving the algebraic Riccati equation with the matrix sign function.
Linear Algebra and Appl. 85, 267-279.

DEMMEL, J. W., & HICHAM, N. J. 1990 Stability of block algorithms with fast level 3
BLAS. LAPACK Working Note #22 and Numerical Analysis Report No. 188,
University of Manchester, England.

DONGARRA, J. J., GUSTAVSON, F. G., & KARP, A. 1984 Implementing linear algebra
algorithms for dense matrices on a vector pipeline machine. SIAM Review 26, 91-112.

DONGARRA, J. J., BUNCH, J. R., MOLER, C. B., & STEWART, G. W. 1979 UNPACK
Users' Guide. Philadelphia: Society for Industrial and Applied Mathematics.

FORSYTHE, G. E., MALCOLM, M. A., & MOLER, C. B. 1977 Computer Methods for
Mathematical Computations. Englewood Cliffs, NJ: Prentice-Hall.

GOLUB, G. H., & VAN LOAN, C. F. 1989 Matrix Computations, 2nd edn. Baltimore, MD:
Johns Hopkins University Press.

HIGHAM, N. J. 1986 Computing the polar decomposition—with applications. SIAM J. Sci.
Stat. Comput. 7, 1160-1174.

HIGHAM, N. J. 1989 The accuracy of solutions to triangular systems. SIAM J. Numer.
Anal. 26, 1252-1265.

HIGHAM, N. J. 1990a Exploiting fast matrix multiplication within the level 3 BLAS. ACM
Trans. Math. Soft. 16, 352-368.

HIGHAM, N. J. 1990b How accurate is Gaussian elimination? In: Numerical Analysis 1989,
Proceedings of the 13th Dundee Conference. Pitman Research Notes in Mathematics
228 (D. F. Griffiths & G. A. Watson, Eds). Harlow: Longman Scientific and
Technical. Pp. 137-154.

MCCULLAGH, P., & NELDER, J. A. 1989 Generalized Linear Models, 2nd edn. London:
Chapman and Hall.

MILLER, W., & SPOONER, D. 1978 Software for roundoff analysis, II. ACM Trans. Math.
Soft. 4, 369-387.

SKEEL, R. D. 1979 Scaling for numerical stability in Gaussian elimination. / . Assoc.
Comput. Mach. 26, 494-526.

STEWART, G. W. 1973 Introduction to Matrix Computations. New York: Academic Press.
WILKINSON, J. H. 1961 Error analysis of direct methods of matrix inversion. / . Assoc.

Comput. Mach. 8, 281-330.
WILKINSON, J. H. 1963 Rounding Errors in Algebraic Processes. Notes on Applied Science

No. 32. London: Her Majesty's Stationery Office.
WILKINSON, J. H. 1965 The Algebraic Eigenvalue Problem. Oxford: Oxford University

Press.

