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A preconditioned Newton algorithm for the nearest correlation matrix

RÜDIGER BORSDORF†

Department of Mathematics, Chemnitz University of Technology,
D-09107 Chemnitz, Germany

AND

NICHOLAS J. HIGHAM‡

School of Mathematics, The University of Manchester, Manchester M13 9PL, UK

[Received on 21 April 2008; revised on 1 December 2008]

Dedicated to the memory of A. R. Mitchell, 1921–2007.

Various methods have been developed for computing the correlation matrix nearest in the Frobenius norm
to a given matrix. We focus on a quadratically convergent Newton algorithm recently derived by Qi and
Sun. Various improvements to the efficiency and reliability of the algorithm are introduced. Several of
these relate to the linear algebra: the Newton equations are solved by minres instead of the conjugate
gradient method, as it more quickly satisfies the inexact Newton condition; we apply a Jacobi precondi-
tioner, which can be computed efficiently even though the coefficient matrix is not explicitly available;
an efficient choice of eigensolver is identified; and a final scaling step is introduced to ensure that the re-
turned matrix has unit diagonal. Potential difficulties caused by rounding errors in the Armijo line search
are avoided by altering the step selection strategy. These and other improvements lead to a significant
speed-up over the original algorithm and allow the solution of problems of dimension a few thousand in
a few tens of minutes.

Keywords: correlation matrix; positive semidefinite matrix; Newton’s method; preconditioning; rounding
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1. Introduction

Correlation matrices are real, symmetric positive semidefinite matrices with ones on the diagonal. They
arise in situations where correlations between pairs of random variables are computed, and also when
pairwise similarity measures between objects are formed and suitably scaled, for example, in machine
learning (Qi et al., 2007). It is common, in practice, to be faced with anapproximatecorrelation matrix:
a matrix that is supposed to be a correlation matrix but for a variety of possible reasons is not. In finance,
for example, the correlations may be between stocks measured over a period of time and missing data
(perhaps due to a company not trading for the whole period) may compromise the correlations and lead
to a non-positive semidefinite matrix. Again in finance, a practitioner may wish to explore the effect
on a portfolio of assigning correlations between certain assets differently from the historical values, but
this again can destroy the semidefiniteness of the matrix. The use of approximate correlation matrices
in these applications can render the methodology invalid and lead to negative variances and volatilities
being computed (Finger, 1997; Turkayet al., 2003; Qi & Sun, 2007).
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The prevalence of approximate correlation matrices has led to much interest in the problem of com-
puting the nearest correlation matrix to a given matrixA ∈ Rn×n, that is, solving the problem

min{‖A− X‖F : X = XT, X > 0, Diag(X) = e}, (1.1)

where for symmetric matricesX andY, X > Y denotes thatX − Y is positive semidefinite, Diag(X)
is the vector of diagonal elements ofX, e is the vector of ones and the Frobenius norm‖X‖F =
trace(XT X)1/2. AsRn×n is a Hilbert space with inner product〈X, Y〉 = trace(XTY) and the constraints
in (1.1) are closed convex sets, (1.1) has a unique solution (Deutsch, 2001, Theorem 3.5).

The nearness problem (1.1) has been extensively studied over the last twenty years. Much of the
literature is concerned withad hocmethods that are not guaranteed to solve the problem. An early
example is a method ofKnol & ten Berge(1989) that writesX = YTY and iteratively minimizes the
objective function over each unit 2-norm column ofY. More recently,Lurie & Goldberg(1998) used
the Gauss–Newton method to minimize‖A − RT R‖2F , whereR is upper triangular with columns of
unit 2-norm.

Higham(2002b) used convex analysis to give a characterization of the solution and described an
alternating projections algorithm that converges linearly to the solution. This algorithm has several at-
tractive features. First, it is very simple to implement, requiring just matrix additions and computation
of eigendecompositions. Second, it can take advantage of the property, proved inHigham(2002b), that
if aii > 1 for all i and A has many negative eigenvalues (as is likely in finance applications) then
the solution has at least as many zero eigenvalues (so is of low rank). Third, it is readily adapted to solve
the problem with additional constraints that requireX to belong to a convex set, such as a constraint that
holds any set of elements ofX fixed (Borsdorf, 2007, Chapter 7). The main drawback of the alternating
projections algorithm is its possibly slow convergence.

Malick (2004) studied a problem more general than (1.1) in which the positive semidefinite matrices
are replaced by a convex set and the constraints on the diagonal ofX are replaced by general linear
constraints. He dualized the linear constraints and applied a quasi-Newton method to the dual problem.
Boyd & Xiao (2005) explored similar ideas. When applied to the problem (1.1), the methods in both of
these papers can be expected to be at best linearly convergent because the dual objective function is not
twice continuously differentiable. A breakthrough was subsequently made byQi & Sun (2006), who
derived a quadratically convergent Newton method for (1.1), again by working with the dual problem.
The proof of quadratic convergence relies heavily on the theory of semismooth optimization. Interior
point methods can also be applied to classes of problems containing (1.1). Toh(2008) developed such a
method that requires the solution of dense linear systems of dimension aboutn2/2, constructed precon-
ditioners for the systems and applied the method to (1.1).

Qi & Sun (2006) built from their theory a globally convergent Newton algorithm for finding the
nearest correlation matrix and illustrated its performance on a small set of artificial test problems. The
purpose of our work is to improve the efficiency and reliability of the algorithm through a careful
analysis of its component steps. The main improvements we make are as follows.

• The Newton equations are solved by minres instead of the conjugate gradient (CG) method, since
minres minimizes the residual that appears in the inexact Newton condition.

• We show how to efficiently apply a Jacobi preconditioner to the Newton equations—a nontrivial task
since the coefficient matrix is not explicitly available.

• The line search is modified so as to perform reliably in finite precision arithmetic when the conver-
gence tolerance is close to the machine precision.
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• We show experimentally that the choice of eigensolver can have a significant effect on the computa-
tional cost and identify a suitable choice.

• We introduce a final scaling step, justified by a distance bound, that ensures that the returned matrix
has unit diagonal.

The outline of the paper is as follows. In Section2 we present background on the dual problem and
the Newton method and we state the algorithm of Qi and Sun. In Section3 we develop our refinements
to the algorithm. The improved algorithm is described in Section4 and some numerical experiments are
reported in Section5. Concluding remarks are in Section6.

2. Newton algorithm of Qi and Sun

In this section we summarize the key results from the analysis ofQi & Sun (2006) that will be needed
later and we state the algorithm of Qi and Sun.

The problem obtained by dualizing the linear constraints in the nearest correlation matrix problem
(1.1) is the unconstrained convex optimization problem (Malick, 2004; Qi & Sun, 2006)

min
y∈Rn

f (y) :=
1

2
‖(A+ diag(y))+‖

2
F − eTy. (2.1)

Here diag(y) for y ∈ Rn denotes the diagonal matrix whose diagonal elements are those of the vector
y, while diag(A) for A ∈ Rn×n denotes diag([a11, a22, . . . , ann]). (Recall that Diag, introduced in Sec-
tion 1, maps matrices onto vectors.) The operator(∙)+ projects onto the positive semidefinite matrices:
for symmetricC ∈ Rn×n with spectral decompositionC = QΛQT (QTQ = I andΛ = diag(λi )),
C+ = Qdiag(max(λi , 0))QT is the nearest positive semidefinite matrix toC in the Frobenius norm
(Higham, 1988). The following lemma collects some key properties of the dual problem obtained by
Malick (2004) (see alsoMicchelli & Utreras(1988, Lemma 2.1) for a proof of some of these properties
in greater generality).

LEMMA 2.1 The dual problem (2.1) has the following properties:

(a) f is convex and continuously differentiable and has a unique minimizer;

(b) the gradient∇ f is given by

∇ f (y) = Diag((A+ diag(y))+)− e (2.2)

and is Lipschitz continuous with Lipschitz constant 1;

(c) the solutionsy∗ of the dual problem (2.1) andX∗ of the primal problem (1.1) are related by

X∗ = (A+ diag(y∗))+. (2.3)

Note that the lemma shows that the original constrained problem with(n2−n)/2 variables is equiv-
alent to an unconstrained problem with justn variables.

To find y∗ we need to solveg(y∗) = 0, whereg(y) = ∇ f (y). Noting thatg is not differentiable, we
denote by∂g the generalized Jacobian, which is defined since∇ f is Lipschitz continuous. Qi and Sun
applied the generalized Newton iteration

yk+1 = yk − V−1
k g(yk), Vk ∈ ∂g(yk), k = 0:∞. (2.4)
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For a generalg this iteration need not converge. However, by exploiting the strong semismoothness of
the operator(∙)+, Qi and Sun were able to prove quadratic convergence of the iteration forg = ∇ f .

THEOREM 2.2 (Qi and Sun) Lety∗ denote the minimizer of (2.1). All V ∈ ∂g(y∗) are positive definite
and the generalized Newton method (2.4) converges quadratically toy∗ for any choice ofVk if y0 is
sufficiently close toy∗.

In order to implement the method we need to be able to compute a generalized JacobianV ∈ ∂g(y).
Qi and Sun showed that such a matrix is given implicitly by

Vyh = Diag(Py(Wy ◦ (PT
y H Py))PT

y ). (2.5)

Here◦ denotes the Hadamard product (X ◦Y = (xi j yi j )), h ∈ Rn andH = diag(h), Py is an orthogonal
matrix calculated from the spectral decomposition ofA+ diag(y):

A+ diag(y) = Pydiag(λ(y))PT
y , (2.6)

with λ(y) the vector of eigenvalues, andWy depends on the eigenvaluesλ(y) in the way we now de-
scribe. Letλ(y) be in descending order and define the setsα = {i : λi (y) > 0}, β = {i : λi (y) = 0} and
γ = {i : λi (y) < 0}. Then the matrixWy is defined by

Wy =






Eαα Eαβ T
Eβα 0 0

T 0 0




 , T =

(
λi (y)

λi (y)− λ j (y)

)

i∈α, j∈γ
, (2.7)

whereEαβ denotes the matrix of ones of dimension|α| × |β|. It is easy to show thatVy > 0. We have

hTVyh= trace(H Py(Wy ◦ (PT
y H Py))PT

y )

= trace(H̃(Wy ◦ H̃)), whereH̃ = PT
y H Py,

= ‖W̃ ◦ H̃‖2F , whereW̃ ◦ W̃ = Wy,

> 0, (2.8)

using the symmetry of̃H .
The matrixVy can be explicitly computed by settingh = ei in (2.5), for i = 1: n, whereei is the

i th unit vector. But, since evaluating (2.5) for a singleh costsO(n3) operations, obtainingVy costs a
prohibitively expensiveO(n4) operations. We are therefore restricted to solving the Newton equation
by methods that require matrix–vector products only.

The following algorithm implements the method above as an inexact Newton method (the linear
system (2.4) is solved only approximately) and it uses a line search strategy and globalization tech-
niques. The algorithm is globally convergent and is essentially the same as Algorithm 5.1 ofQi & Sun
(2006).

ALGORITHM 2.3 Given a symmetric matrixA ∈ Rn×n and a convergence tolerance tol, this algorithm
computes the nearest correlation matrixX to A in the Frobenius norm. On termination‖∇ f (yk)‖2 6 tol
(see (2.2)). The algorithm is quadratically convergent.

Step 1: Initialization:y0 ∈ Rn, η ∈ (0, 1), ρ, σ ∈ (0, 1/2] andk = 0.

Step 2: Calculate∇ f (yk). If ‖∇ f (yk)‖2 6 tol then setX = (A+ diag(yk))+ and quit.
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Step 3: Compute a spectral decomposition (2.6) of A+ diag(yk) and form the matrixWyk from (2.7).

Step 4: Determine the new directiondk by applying an iterative method (using (2.5) to computeVkd)
to

Vkd = −∇ f (yk), (2.9)

terminating when both the conditions

‖∇ f (yk)+ Vkdk‖2 6 ηk‖∇ f (yk)‖2, (2.10)

−
∇ f (yk)

T

‖dk‖2
∙

dk

‖dk‖2
> ηk (2.11)

are satisfied, whereηk = min(η, ‖∇ f (yk)‖2). If either one of these conditions cannot be satis-
fied then let

dk = −B−1
k ∇ f (yk), (2.12)

where Bk is any symmetric positive definite matrix with{‖Bk‖2} and {‖B−1
k ‖2} uniformly

bounded.

Step 5: Choose an appropriate step lengthαk by applying Armijo backtracking: find the smallest non-
negative integermk such that

f (yk + ρmkdk) 6 f (yk)+ σρmk∇ f (yk)
Tdk (2.13)

is satisfied.

Step 6: Setαk = ρmk , yk+1 = yk + αkdk andk← k+ 1. Go to Step 2.

In Section3 we develop several refinements that improve the efficiency and robustness of the basic
algorithm.

3. Refinements

3.1 Linear equation solver

Qi & Sun (2006) took the CG method as the solver for the Newton system (2.9), motivated by the fact
thatVk is positive semidefinite for allk and positive definite for sufficiently largek (see (2.8) and Theo-
rem2.2). The stopping criterion (2.10) is based on the norm of the residualr ( j )

k = ∇ f (yk)+ Vkd( j )
k of

the iteratesd( j )
k , but the CG method minimizes theerror d−d( j )

k in theVk norm (‖x‖Vk = (xTVkx)1/2)
on the j th iteration rather than the residual, and it can produce very nonmonotonic residuals. Moreover,
the possible singularity of the coefficient matrixVk can cause problems for the CG method.

Instead of CG, we use the minres method ofPaige & Saunders(1975). This method minimizes the
residual norm‖r ( j )

k ‖2 on the j th iteration and so produces a monotonically decreasing sequence of resid-
uals. Moreover, unlike CG, minres is defined for indefinite systems and thus it should be more stable than
CG in finite precision arithmetic for nearly singular or numerically indefinite matrices. Minres requires
only one matrix–vector product per iteration, but it requires a few more vector operations than CG.
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3.2 Preconditioning

As we noted in Section2, the coefficient matrixVk is not explicitly available. Nothing is known about
the eigensystem ofVk, apart from the non-negativity of the eigenvalues, and preconditioning the system
(2.9) is therefore a challenge. However, it is possible to compute the diagonal elements ofVk in O(n3)
operations and thereby to apply the Jacobi preconditioner. Recall that the Jacobi preconditioner for a
positive definite matrixA is D = diag(A) and the preconditioned matrix isD−1/2AD−1/2, which has
2-norm condition number within a factorn of the minimum over all diagonal congruences, by a result of
van der Sluis(1969) (Higham, 2002a, Corollary 7.6). The Jacobi preconditioner is a reasonable choice in
view of the existence of residual bounds for minres that depend onκ2(A) (Greenbaum, 1997, Chapter 3;
Elmanet al., 2005, Chapter 6).

To see how to compute diag(Vk) let h = ei , H = ei eT
i and PT

k = [ p1, p2, . . . , pn]. Then, from
(2.5), the(i, i ) element ofVk is given by

vi i = eT
i Pk(Wk ◦ PT

k H Pk)PT
k ei = pT

i (Wk ◦ pi pT
i )pi

= pT
i diag(pi )Wkdiag(pi )pi = qT

i Wkqi ,

whereqi = pi ◦ pi . Thus the diagonal elementsvi i can be computed as follows:

Qk = [q1, q2, . . . , qn] = Pk ◦ Pk, n2 flops,

Mk = [m1, m2, . . . , mn] = Wk Qk, 6 2n3 flops,

vi i = qT
i mi , i = 1: n, 2n2 flops.

The dominant cost is therefore the matrix–matrix multiplication givingMk. In forming Mk the zero and
eeT blocks ofWk (see (2.7)) can be exploited to reduce the cost.

To allow for a possibly singularVk and the effects of rounding errors we set all diagonal entries less
than a predefined positive tolerance to that tolerance.

3.3 Armijo backtracking

We are aiming for an algorithm that is capable of computing the nearest correlation matrix to full ma-
chine accuracy, and so we wish to allow the convergence tolerance tol in Algorithm2.3 to be of the
order of the unit roundoffu. However, the Armijo backtracking can break down for small tolerances. To
see why, consider a twice continuously differentiable functionφ: Rn→ R and the expansion

φ(x + p) = φ(x)+ ∇φ(x)T p+
1

2
pT∇2φ(x + tp)T p, t ∈ (0, 1).

If |φ(x)| = 1, ‖p‖2 < u1/2, ‖∇φ(x)‖2 < u1/2/2 and‖∇2φ(x + tp)‖2 < 1 then |φ(x + p) −
φ(x)| < u|φ(x)|, and so f l (φ(x + p)) = f l (φ(x)). In this situationx may still be some distance
from a minimizer ofφ—albeit perhaps only one or two steps away for a quadratically converging
method—yet the Armijo condition cannot be verified because the function values it needs to com-
pare are indistinguishable in floating-point arithmetic. In numerical experiments we have found that
this problem with the Armijo condition can cause Algorithm2.3 to fail to converge in finite precision
arithmetic.
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To avoid this problem, whenf l ( f (yk+ρmkdk)) and f l ( f (yk)) are close enough that rounding errors
are dominating we take the inexact Newton direction with step length 1, provided that the resultingyk+1
satisfies

‖∇ f (yk+1)‖2
‖∇ f (yk)‖2

6 1− μ for someμ ∈ (0, 1), (3.1)

where the latter condition ensures that useful progress is made towards the minimizer. Or, if (3.1) is not
satisfied we take the steepest descent direction with step length 1.

The next result provides support for the test (3.1) by showing that it is satisfied for sufficiently
largek.

LEMMA 3.1 For sufficiently largek in Algorithm 2.3 we haveyk+1 = yk + dk, with dk the inexact
Newton direction and

‖∇ f (yk+1)‖2
‖∇ f (yk)‖2

= O(‖dk‖2).

Proof. From the proof of Theorem 5.3 ofQi & Sun (2006), we know that for all sufficiently largek the
inexact Newton step is taken with stepαk = 1, thatdk satisfies (2.10) and (2.11), that

‖yk+1− y∗‖2 = O(‖yk − y∗‖
2
2), (3.2)

‖yk − y∗‖2 6 ‖dk‖2+O(‖dk‖
2
2) (3.3)

and also that there exists aρ > 0 so that

‖∇ f (yk)‖2‖dk‖2 > −∇ f (yk)
Tdk > ρ‖dk‖

2
2. (3.4)

It follows from (3.3) and (3.4) that, for sufficiently largek,

‖yk − y∗‖22
‖∇ f (yk)‖2

6
‖yk − y∗‖22

ρ‖dk‖2
6

1

ρ
‖dk‖2+O(‖dk‖

2
2) = O(‖dk‖2). (3.5)

From (3.2), using the Lipschitz property in Lemma2.1(b) of∇ f (y) and (3.5), we deduce that

‖∇ f (yk+1)‖2
‖∇ f (yk)‖2

=
‖∇ f (yk+1)− ∇ f (y∗)‖2

‖∇ f (yk)‖2
6
‖yk+1− y∗‖2
‖∇ f (yk)‖2

=O

(
‖yk − y∗‖22
‖∇ f (yk)‖2

)

= O(‖dk‖2),

which completes the proof. �

3.4 Accuracy of the solution

A subtle problem with Algorithm2.3 is that it does not yield a matrix with unit diagonal because the
constraints Diag(X) = eare not explicitly enforced. Indeed, if∇ f (y) 6= 0 on termination then it is clear
from (2.2) and (2.3) that the returned matrix does not have unit diagonal. If we simply set the diagonal
elements to 1 then we may destroy the definiteness. We could then restore definiteness by projecting onto
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the nearest positive semidefinite matrix, which changes the diagonal. Iterating this procedure essentially
gives the alternating projections algorithm (Higham, 2002b).

We will adopt a simpler and less expensive approach. We replace the final iterateX by

X̃ = D−1/2X D−1/2, D = diag(X),

which has unit diagonal. Note that this is precisely the transformation that takes a covariance matrix into
the associated correlation matrix. Since this transformation is a congruence, it preserves the definiteness
of X. However, it can increase the distance fromA. The next lemma provides a bound on the increase.

LEMMA 3.2 If X > 0 is the output of Algorithm2.3andD = diag(X) > 0 then

‖A− D−1/2X D−1/2‖F 6 ‖A− X‖F +
tol

1− tol
‖X‖F . (3.6)

Proof. We have

‖A− D−1/2X D−1/2‖F 6 ‖A− X‖F + ‖X − D−1/2X D−1/2‖F . (3.7)

Our aim is to bound the second term of (3.7) by using‖∇ f (yk)‖2 6 tol, whereyk is the final iterate of
Algorithm 2.3. From (2.2) and (2.3) it follows that

D = diag(∇ f (yk))+ I . (3.8)

With G = X − D−1/2X D−1/2, we have

g2
i j =

(
xi j − (∇ f (yk)i + 1)−1/2xi j (∇ f (yk) j + 1)−1/2

)2

= x2
i j

(
1− (∇ f (yk)i + 1)−1/2(∇ f (yk) j + 1)−1/2

)2
. (3.9)

Using|∇ f (yk)i | 6 tol for all i yields

1

1+ tol
6 (∇ f (yk)i + 1)−1/2(∇ f (yk) j + 1)−1/2 6

1

1− tol
. (3.10)

Hence, in order to find an upper bound forg2
i j it is enough to maximize the functionf (s) = (1− 1/

(1+ s))2 = s2/(1+ s)2 overs ∈ [−tol, tol]. The maximum is attained ats = −tol and so we obtain
from (3.9) thatg2

i j 6 x2
i j tol2/(1− tol)2, giving ‖G‖F 6 ‖X‖F tol/(1− tol). The required bound then

follows. �
The bound (3.6) is very satisfactory: it says that the increase in the distance‖A− X‖F induced by

the normalization of the diagonal is at most about tol‖X‖F
<
∼ ntol, and we expectntol � ‖A− X‖F

in applications.

3.5 Choice of eigensolver

Algorithm 2.3requires a full eigenvalue decomposition of the symmetric matrixA+ diag(y) for every
evaluation of f (y) and∇ f (y), and thus at least one eigenvalue decomposition per iteration. This is a
major part of the total cost of the method, and so it is essential to minimize its cost.

There are three main algorithmic options, for which the NAG Library and LAPACK codes are
f08fa /dsyev , f08fc /dsyevd and f08fd /dsyevr . All three algorithms reduce the symmetric
matrix to a tridiagonal matrix but then proceed differently:f08fa uses the QR algorithm,f08fc uses
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the divide and conquer algorithm andf08fd uses the dqds algorithm and multiple relatively robust
representations (MRRR). In our numerical experiments we compare these algorithms.

4. The modified algorithm

The following modification of Algorithm2.3 incorporates the improvements described in Section3.

ALGORITHM 4.1 Given a matrixA ∈ Rn×n and a convergence tolerance tol, this algorithm computes
the nearest correlation matrixX to A in the Frobenius norm. On termination‖∇ f (yk)‖2 6 tol (see
(2.2)). The algorithm is quadratically convergent.

Step 1: Initialization:η = 0.5, ϕ = 10−6, μ ∈ (0, 1), ρ, σ ∈ (0, 1/2] andk = 0.

Step 2: SetA← (A+ AT)/2 if A is nonsymmetric. Setaii = 1, for i = 1: n, andy0 = 0.

Step 3: Calculate∇ f (yk). If ‖∇ f (yk)‖2 6 tol, setX = D−1/2X̃ D−1/2, whereX̃ = (A+ diag(yk))+
andD = diag(X̃), and quit.

Step 4: Compute a spectral decomposition ofA+diag(yk) and form the matrixWyk from (2.7) and the
Jacobi preconditionerDk (see Section3.2).

Step 5: Determine the new directiondk by applying minres to the preconditioned linear system (using
(2.5) to computeVkd)

D−1/2
k Vk D−1/2

k ∙ D1/2
k d = −D−1/2

k ∇ f (yk), (4.1)

terminating when both the conditions

‖∇ f (yk)+ Vkdk‖2 6 min(η, ‖∇ f (yk)‖2)‖∇ f (yk)‖2, (4.2)

−
∇ f (yk)

T

‖dk‖2
∙

dk

‖dk‖2
> min(ϕ, ‖∇ f (yk)‖2) (4.3)

are satisfied. If either of these conditions cannot be satisfied then letdk = −∇ f (yk).

Step 6: (Choice of step using Armijo backtracking.)
For m= 0:∞

If f (yk + ρmdk) 6 f (yk)+ σρm∇ f (yk)
Tdk then setαk = ρm and go to Step 7.

If f (yk + ρmdk) and f (yk) are ‘nearly equal’ then, if

‖∇ f (yk + αkdk)‖2
‖∇ f (yk)‖2

6 1− μ (4.4)

then setαk = 1 and go to Step 7, else setdk = −∇ f (yk) andαk = 1 and go to Step 7.
end

Step 7: Setyk+1 = yk + αkdk andk← k+ 1. Go to Step 3.

A few comments are in order.

(a) Since all matrices agreeing withA on the off-diagonal have the same nearest correlation matrix,
we set the diagonal ofA to unity at the start. Wheny0 = 0 this gives immediate convergence if
the resulting matrix is positive semidefinite.



NEWTON ALGORITHM FOR THE NEAREST CORRELATION MATRIX 103

(b) Step 2 projects onto the symmetric matrices (Higham, 1988) and allows the algorithm to work
for nonsymmetric inputsA (Borsdorf, 2007, Theorem 4.91).

(c) Our use ofϕ � η in (4.3) and (4.2) encourages the use of inexact Newton directions over the
steepest descent direction, which our numerical experiments have shown leads to faster run times.

(d) In Step 6 a suitable test for two floating-point numbersa andb being ‘nearly equal’ is|a− b| <
γ u(1+ |a| + |b|), whereγ is a constant that we set to 100.

(e) Some other straightforward tests that terminate when rounding errors start to dominate are omit-
ted to avoid clutter but are included in our implementation tested in Section5.

(f) Qi & Sun (2006) showed how their Newton algorithm can be adapted for the problem in which
the constraintX > 0 in (1.1) is replaced byX > β I , whereβ ∈ (0, 1). Algorithm 4.1 can
likewise be adapted for this so-called ‘calibration of correlation matrices’ problem.

5. Numerical experiments

We now present some numerical experiments that illustrate the behaviour of Algorithm4.1and compare
it with Algorithm 2.3 and the alternating projections method. The tests were carried out in MATLAB
R2006b on a 2.4-GHz AMD Athlon under linux (Tables1 and2) and MATLAB R2007b on a 2.2-GHz
AMD Athlon under Windows XP (Tables3 and4). The unit roundoff isu = 2−53 ≈ 1.1 × 10−16.
We invoked certain NAG Fortran Library (Mark 21) codes via the NAG Toolbox for MATLAB (Beta 1
under linux and Beta 2 under Windows) (NAG Toolbox for MATLAB).

The codes tested are as follows.

• nearcor : a MATLAB implementation of Algorithm2.3written by the authors ofQi & Sun(2006)
and used in the testing in that paper.

• nearcor new : our MATLAB implementation of Algorithm4.1. We takeμ = 0.9, ρ = 0.5 and
σ = 10−4. We use a MATLAB implementation of minres provided by the authors ofElmanet al.
(2005).

TABLE 1 Comparison of different iterative methods in
nearcor new , with tol = 10−7n

cor1399
CG minres

No preconditioning
Ttot 213.4 170.9
Tmvp 146.3 104.3
Teig 62.6 61.7
Iters 7 7
# mvp 42 30

With preconditioning
Ttot 142.4 111.0
Tmvp 76.6 45.2
Teig 52.8 52.8
Iters 6 6
# mvp 22 13
Time Pre. 8.83 8.9

cor3120
CG minres

No preconditioning
Ttot 2799 1736
Tmvp 2100 1138.6
Teig 662.0 562.8
Iters 7 6
# mvp 57 31

With preconditioning
Ttot 1197 905.7
Tmvp 624.2 331.1
Teig 468.3 469.2
Iters 5 5
# mvp 17 9
Time Pre. 72.9 72.89
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TABLE 2 Ratios of total time taken bynearcor new with f08fa
andf08fd to total time fornearcor new with f08fc

f08fa f08fc f08fd

cor1399 2.1 1.0 1.9
cor3120 2.3 1.0 2.2

TABLE 3 Time in seconds for the new codenearcor new , nearcor (Qi and Sun) and
alternating projections, withtol = 10−7n

nearcor new nearcor Alternatingprojections

Time Iterations Time Iterations Time Iterations
cor1399 96.9 5 378.5 5 529.0 62
cor3120 814.0 4 5256.7 4 – –
Risk-daily 0.39 0 0.47 0 1.02 2
Risk-monthly 0.36 0 0.53 0 1.22 2

TABLE 4 Time in seconds for the new codenearcor new , nearcor (Qi and Sun) and
alternating projections, withtol = 2nu

nearcor new nearcor Alternatingprojections

Time Iterations Time Iterations Time Iterations
cor1399 171.9 7 537.1 7 4251.0 494
cor3120 1533.8 6 15685.0 9 – –
Risk-daily 5.73 5 – – 30.92 55
Risk-monthly 15.94 10 – – 18.66 27

• The MATLAB implementation of the alternating projections method used in the testing inHigham
(2002b).

We use four test matrices, all of which are approximate correlation matrices with unit diagonal.

• cor1399: This is a matrix of dimension 1399 of stock data provided by a fund management company.
It is highly rank deficient and its off-diagonal entries are in the interval [−0.9644, 1.1574]. (Missing
data can result in off-diagonal entries of magnitude greater than 1, depending on how the matrix is
constructed.)

• cor3120: This is a matrix from the same source as the first one. It has dimensionn = 3120 and has
full rank. The off-diagonal elements are in the interval [−0.6250, 1.0751].

• Risk-daily, Risk-monthly: These are matrices from the RiskMetrics database (Educational data sets,
http://www.riskmetrics.com/stddownload edu.html). The documentation says that, ‘The data sets
contain consistently calculated volatilities and correlation forecasts for use in estimating market
risk. The asset classes covered are government bonds, money markets, swaps, foreign exchange and
equity indices (where applicable) for 31 currencies, and commodities.’ We obtained two matrices for
a 1-day and a 1-month horizon assigned to 15 July 2006, which have dimension 387 and a smallest
eigenvalue of−7.92× 10−6 and−4.91× 10−6, respectively.

http://www.riskmetrics.com/stddownload edu.html
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First, we investigate the influence of the iterative solver and preconditioning. With tol= 10−7n, we
solved the first two problems usingnearcor new , and again withnearcor new with the CG method
replacing minres, using the NAG CG suitef11gd/f11ge/f11gf , and in each case solving both with
and without preconditioning. The results are in Table1, where we reportTtot: the total run time (in
seconds),Tmvp: the time taken to compute all the matrix–vector productsVkh (see (2.5)), Teig: the time
to compute the spectral decompositions, Iters: the number of outer (inexact Newton) iterations, # mvp:
the number of matrix–vector products required and Time Pre.: the time to compute the preconditioner.

Several comments can be made on Table1. First, minres leads to a faster algorithm than the CG
method both with and without preconditioning and results in one fewer iteration for the cor3120 matrix
without preconditioning. The reduction in time is largely accounted for by the fewer matrix–vector
products. Second, preconditioning brings a useful speed-up, amounting for cor3120 to a 48% reduction
in time with minres and a 58% reduction with CG. Third, the eigenvalue computations take 32% of the
total time for cor3120 with unpreconditioned minres, rising to 52% of the time with preconditioning.

We now take a look at the effect of the choice of eigensolver (see Section3.5). The results in
Table1 are based on the use of NAG codef08fc (divide and conquer). Table2 reports the results
for solving the same problems as in Table1 usingnearcor new with this eigensolver,f08fa (the
QR algorithm—as used by MATLAB for theeig function) andf08fd (dqds/MRRR), using precon-
ditioning in each case. The results shown are ratios of total times spent to run Algorithm4.1with each
eigensolver normalized by the run time with the fastest eigensolverf08fc . We see that withf08fc
the algorithm is twice faster than if the other two eigensolvers are used, for these matrices, and, indeed,
f08fc is also the fastest in similar tests that we have performed with different matrices (Borsdorf,
2007). We found this difference quite surprising, and it shows the importance of trying different algo-
rithmic variants of the basic linear algebra ‘black boxes’. The performance of these codes for tridiagonal
matrices was investigated byDemmelet al. (2008), who observed that the performance of divide and
conquer and dqds/MRRR depends strongly on the particular matrices to which they are applied.

In Tables3 and4 we comparenearcor new with the codenearcor of Qi and Sun and with
the alternating projections code fromHigham(2002b), with two different convergence tolerances cor-
responding to half and full machine precision. The main differences betweennearcor new and
nearcor affecting the run time are the different eigensolvers (f08fc for nearcor new and MAT-
LAB’s eig for nearcor ), the different iterative method for computing the Newton direction (minres
versus CG), the use of the Jacobi preconditioner innearcor new and more optimized MATLAB cod-
ing in nearcor new , particularly for the gradient evaluations. In the tables ‘–’ denotes thatnearcor
did not converge or that alternating projections was unable to handle the matrix in a reasonable time
(we estimate a run time of several days for cor3120). The speed-up ofnearcor new overnearcor
of a factor more than 6 on both problems is significant given that both codes are using the same Newton
algorithm.

Finally, we mention that we have carried out more extensive tests with various classes of random
matrices of dimension up to 1000. The results, reported inBorsdorf(2007, Chapter 6), are consistent
with those shown here. The speed-up ofnearcor new over nearcor ranges between 1.1 and 3.0
and it shows a generally increasing trend withn.

6. Concluding remarks

Our MATLAB implementationnearcor new of the Newton method of Qi and Sun can solve prob-
lems of dimension a few thousand in a few minutes. The run time is dominated by the cost of comput-
ing spectral decompositions, and most of the remaining time is spent in computing the matrix–vector
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products (2.5). Although an extensive computational comparison of all available methods for solving the
nearest correlation matrix problem is lacking, the available evidence suggests that the Newton method
is the best general purpose method.Toh (2008) reported his code having run times of over 1 h to solve
a nearest correlation matrix problem of dimension 1600 (the maximum size reported therein), whereas
nearcor new solves a problem of twice the dimension within 30 min. The alternating projections
method is very easy to implement and is attractive for small problems and modest convergence toler-
ances, but, in general, cannot compete with Newton’s method for efficiency. Extensions of the Newton
method to incorporate constraints and to Hadamard weighting have recently been developed (Qi & Sun,
2007, 2008) and we expect that the ideas herein can be profitably employed in those methods.
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