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a b s t r a c t

We consider the sustained propagation of axisymmetric intrusions and gravity currents through linearly
stratified or unstratified ambient fluids. Such flow configurations are found in a number of atmospheric
and oceanic flows, in particular the predominantly horizontal spreading of a volcanic ash cloud after it
has ascended through the atmosphere. There is strong theoretical evidence that these flows consist of
two domains: an outer annular ‘head’ at the front of the current in which the motion is unsteady; and
an inner, much thinner ‘tail’, which is steady, but spatially varying. The transition between the regions is
a moving hydraulic jump. While it is possible to investigate these motions by numerically integrating
the governing shallow layer equations, here we develop a much simpler mathematical model, which
reproduces the more complicated model accurately and addresses issues such as what determines the
position of the front and the moving bore between the two regions; what is the partition of influxed
volume between the tail and head; and what is the distribution of suspended particles in the flow if
present at the source? In such settings a conventional integral model fails, as does scaling based on
dimensional analysis and the anticipation of an underlying self-similar form; the predictions they yield
for these flows are incorrect. Insteadwe present a new hybridmodel, which combines exact results of the
steady shallow-water equations in the tail with simplifying assumptions in the head. This model predicts
the flow properties by the straightforward solution of three ordinary differential equations (for front and
bore positions and the volume fraction of particles in the head), without using adjustable constants, and
obtains the correct asymptotic behaviour for the radius of the current rN with respect to time t , namely
rN ∼ t4/5 for gravity currents and rN ∼ t3/4 for intrusions. The predictions are obtained with negligible
computational effort and accurately capture results from the more complete shallow water models. The
model is also applied with success to gravity currents and intrusions that carry particles. For flows in
which it is the presence of the particles alone that drives the motion, we identify length and time scales
for the runout in terms of dimensional parameters that characterise the release, thus establishing the
hybrid model as a useful tool also for modelling radial runout.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

In this contribution we study the sustained propagation (from
a constant source) of axisymmetric intrusions and gravity currents
at high Reynolds number. More specifically, we study the motion
of a sustained volume flux of fluid flowing from a point source
into a quiescent ambient, which is either unstratified or linearly
stratified. If the ambient is stratified, this influx may form an
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intrusion about its level of neutral buoyancy (the height at which
the density of the environment matches the density of influx). If
instead the inflow is denser (or less dense) than any part of the
ambient, there is no neutral buoyancy level, and the influxwill flow
as a gravity current over the horizontal base (or uppermost surface)
of the ambient. Sustained, axisymmetric buoyancy-driven flows in
both these regimes are observed in a range of environmental flows,
including river outfalls [1], intrusions into stratified lakes [2] and
volcanic plumes [3,4].

The buoyancy-driven spreading of intrusions is of particular
practical importance due to the transport of volcanic ash by such
flows. A volcanic plume rises from the vent until it reaches a height
at which its density matches that of the atmosphere, whereupon it
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Fig. 1. Sketch of the radial height profile (left) and vertical density profile (right) of an intrusion (a), and a gravity current (b). In an intrusion, the buoyancy frequency,
which measures the ambient density gradient, satisfies N 2 > 0, the density of the current ρc = ρ0 and h(r, t) represents the half-height of the flow. In a gravity current,
N 2

≥ 0, ρc ≠ ρ0 (here, for currents denser than the ambient, ρc > ρ0) and h represents the full height of the flow. Then for hybrid models, we assume that within the
frontal region – the annulus between a hydraulic jump at r = rJ (t) and the flow front at r = rN (t) – the flow height is spatially constant and equal to hN (t).
begins to spread horizontally. Importantly, the volumetric concen-
tration of ash is sufficiently small so that it contributes only neg-
ligibly to the density of the volcanic cloud (see, for example, the
typical volume fraction of particles at the top of the plume com-
puted byWoodhouse et al. [5]). The intrusion spreads horizontally,
therefore, because it has perturbed the background stratification,
generating a well-mixed flowing layer (see Fig. 1). In the absence
of wind, or if the wind speed is much less than the spreading rate
of the intrusion, the ash cloud spreads radially, potentially trans-
porting ash particles over considerable distances [4]. The challenge
of predicting the dynamics of these clouds is important due to the
significant hazard to aircraft flight that volcanic ash poses [6].

While the examples given so far have featured flows in which
the density of the flowing layer remains constant, ‘particle-driven’
flows often arise in environmental settings, such as oceanic
turbidity currents (see, for example [7–9], and references therein).
In these flows, the presence of relatively heavy suspended particles
contributes significantly to the overall density. These particles
progressively sediment out of the flow, diminishing the density
difference between the current and the ambient and reducing the
driving force. Quantitativemodels of such flows necessarily couple
the evolution of the suspension to the height and velocity of the
flowing layer [7].

1.1. Shallow-layer models

One approach tomodelling both gravity currents and intrusions
exploits the thinness of the flows relative to their radial extent. In
such thin flows, the excess pressure is hydrostatic to leading order
and the flow is predominantly horizontal [10–12]. Both intrusions
and gravity currents can be modelled within the same framework
by including both the difference in density between the current
and ambient and gradients of the ambient fluid density [12,13], and
we present the equations in this form before considering the two
types of flow separately. We denote the density of the intrusion
or gravity current by ρc and the gradient of the ambient fluid
density by−N 2ρc/g , whereN is the constant buoyancy frequency
of the stably stratified ambient fluid. The reference density ρ0 is
the density of the ambient at the horizontal plane of symmetry
of an intrusion, or at the base of a gravity current (Fig. 1). For a
gravity current, ρc > ρ0, and either N = 0 (a uniform ambient)
or N > 0 (a stably stratified ambient). For an intrusion into a
stratified ambient fluid centred about its neutral buoyancy height,
ρc = ρ0 and N > 0. We note that although the density of
an intrusion is the same as the average density of the fluid it
displaces, it may nevertheless be thought of as a buoyancy-driven
flow because the thickness of the intrusion, over which the density
is uniform, means that there are density differences between the
intruding fluid and the ambient.

The layer-averaged radial velocity of the flow is denoted as u
and the flow thickness h, both functions of the radial coordinate, r ,
and time, t . While for a gravity current, h denotes the full thickness
of the current, for an intrusion h denotes the half-thickness, and is
measured from the neutral-buoyancy level to the upper interface;
the lower interface is the mirror image (see Fig. 1).

Shallow-layer equations expressing the conservation of mass
and balance of momentum have been developed to model the
evolution of u and h, and are given by (see, for example [12,14,
sections 13 and 16.3]),
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where g ′ is the reduced gravity (ρc−ρ0)g/ρ0. Conservation ofmass
(1) is derived on the neglect of mixing with the surrounding fluid,
while themomentumbalance (2) is derived under the assumptions
that drag is negligible, and that density differences are sufficiently
small so that the flow is Boussinesq.

Gravity currents and intrusions may transport relatively dense
particles in suspension, which settlewith velocityws. Denoting the
volume fraction of particulate by φ, a shallow layer model for its
evolution is given by

∂φ

∂t
+ u

∂φ

∂r
= −

wsφ

d
, (3)

where d denotes the total depth of the flowing layer; for gravity
currents d = h, while for intrusions d = 2h. In this model it has
been assumed that the flow is sufficiently turbulent to maintain
a well-mixed suspension and that the suspension is sufficiently
dilute that particle–particle interactions are prevented (see, for
example [7]). The bulk density of the current is given by

ρc = ρf + (ρp − ρf )φ, (4)

where ρf and ρp are respectively the densities of the interstitial
fluid and suspended particles. If (ρp − ρf )φ ≪ |ρ0 − ρf | + ρ0
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N 2h/g then the particles are dynamically passive; they aremerely
advected by the flow and settle out of suspension. We term these
flows ‘particle-laden’ and will examine their dynamics in the
context of ash-laden intrusions (see Section 4.1). However, if (ρp −

ρi)φ = O(|ρ0 − ρi| + ρ0N
2h/g), the particles contribute sig-

nificantly to the bulk density of the current and this couples the
governing equations.We term these flows ‘particle-driven’ and ex-
amine in Section 4.2 the dynamics of gravity currents propagating
through uniformenvironmentswhen the excess density of the cur-
rent is due only to the presence of suspended particles (ρi = ρ0).

The three Eqs. (1)–(3) form a hyperbolic system in which the
three characteristic speeds, which we denote by c+, c− and cp, are
c± = u± (N 2h2

+g ′h)1/2 and cp = u. The governing equations are
subject to initial and boundary conditions. While the source is ac-
tive, the intrusion extends from a fixed inlet radius ri to themoving
front at radius rN(t) > ri. At the inlet radius r = ri, we specify the
volume flux of fluid per unit radian, q, in the gravity current or in
the upper half of the intrusion and the volume fraction of particles
(if present)

ruh = q and φ = φ0 at r = ri. (5)

The total volume flux of the gravity current is therefore 2πq and
the volume flux of the intrusion is 4πq. Additionally, if the flow is
supercritical (by which we mean that there is no upstream prop-
agation of perturbations, from the main body of intrusion to the
inlet i.e., c− ≥ 0), then we also specify the source energy density
per unit mass, E/2, as

u2
+ 2g ′h + N 2h2

= E at r = ri. (6)

Thismaybe thought of as theBernoulli constant for an inviscid flow
within a linearly stratified environment. Alternatively we could
have specified an inlet Froude number Fr i = ui/(N

2h2
i + g ′hi)

1/2,
in which case E can be represented implicitly as a function of
Fr i, N , g ′ and ri. In an intrusion, g ′

= 0 and the relationship is
explicit,

E =
N q
riFr i


1 + Fr2i


. (7)

Likewise, in a gravity current propagating through a uniform envi-
ronment, N = 0, and

E =
qg ′(Fr2i + 2)

3

qg ′Fr2i r

2
i

. (8)

An important condition is enforced at the front. The nose of an
inviscid gravity current or intrusion is conveniently modelled as
a jump, for which a relationship between the speed uN and the
height hN can be derived. Theoretical considerations, supported
by experimental and Navier–Stokes simulations ([14], and the
references therein) demonstrate that for the present problem the
pertinent formula is

drN
dt

= uN = F

g ′hN +

N 2h2
N

2

1/2

, (9)

where the generalised Froude number F is a constant close to 1.
We note that in an intrusion, g ′

= 0 and (9) simplifies to

uN =
F

√
2

N h. (10)

For a gravity current propagating through an unstratified environ-
ment (N = 0),

uN = F

g ′h
1/2

, (11)
and, in this case, F corresponds to exactly to the Froude
number (defined as the ratio of the flow velocity to the gravity
wave velocity). There is some uncertainty about the appropriate
numerical value of the constant F . Experimental results for a deep
unstratified ambient suggest that a practical value is F = 1.19 [11],
which is bounded from above by the classical result for an ideal
fluid flow, F =

√
2 [15].

1.2. Box models

In spite of the apparent simplicity of the axisymmetric shallow
water partial-differential equations and associated boundary
conditions, analytical solutions are typically not available and
the equations must be solved numerically. Numerical solution is
complicated by the presence of internal jumps, and in general
sophisticated numerical solversmust be used. These complications
are exacerbated when there is a source at the axis of symmetry.
Furthermore, purely numerical computations do not draw out
analytical and asymptotic expressions for the rate of propagation
and other key dependent variables. Simplifications are also needed
for many practical purposes, and this is what we address in the
current contribution.

Very often gravity current motion can be effectively and ac-
curately modelled using ‘box models’. These are integral repre-
sentations of the underlying dynamics and have been applied
extensively to gravity currents due to compositional differences
with the environment and due to the presence of suspended parti-
cles [14,16,17]. For example, applying this standard methodology
to a sustained intrusion (g ′

= 0) or gravity current (N 2
= 0), two

of the scenarios under investigation in this study, the usual sim-
plification is that the height of the flow does not vary spatially so
that the fluid propagates like a cylinder of radius rN(t) and height
hN(t). Volume continuity, supplemented by the front condition
(10), yields the analytical result rN = Kin(qN t2)1/3 for an intru-
sion and rN = Kgc(qg ′t3)1/4 for a gravity current, where Kin and Kgc
are dimensionless constants (see [14], Sections 7.2 and 18.2, and
references therein). The success of this approach relies on the mo-
tion being quite close to a self-similar form, in which case the ne-
glect of the profile of the height and velocity fields, in favour of an
‘averaged’ value, still maintains the same dynamic balances as the
physical system. The same underlying principle of similarity also
underlies ‘scaling’ analyses that have been applied to these flows
to deduce the rate of radial spreading [18,2,19,3]. However, there
is strong theoretical evidence [1,20,4], supported by some experi-
mental evidence [2,21] that this approach and the predictions rN ∼

t2/3 for intrusions and rN ∼ t3/4 for gravity currents are not correct.
The reason for the failure of the box model in axisymmetric,

continuously-supplied currents is that the solutions of the shallow-
water model are not close to self-similar form [4]. Solutions of
the shallow water equations (1)–(3) exhibit a steady thinning
region (tail) between the source and some position rJ(t), which
expands into a significantly thicker time-dependent annulus (or
doughnut-like ring) head. Although the tail region grows in extent
as rJ(t) increases with time, within the tail there is no temporal
variation of the thickness, velocity or density of the current, and
the flow here is therefore in steady state. The occurrence of this
shape has been pointed out in gravity currents through unstratified
ambients [1,20], in intrusions [22] and for particle-driven currents
in an homogeneous ambient [7]; both of the former two caseswere
analysed more completely by Johnson et al. [4]. Investigations on
the steady, but spatially developing states of intrusions [23], and
of the unsteady motion [20,4], indicate that the flow in the tail
region of both intrusions and gravity currents exhibits a thickness
h that decreases as 1/r and a radial speed u which is significantly
larger than the gravity wave speed (N 2h2

+ g ′h)1/2 and constant
in the far-field. There is hence no propagation of information
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towards the source because the motion is supercritical (c− > 0).
The behaviour in this domain contradicts the assumptions of the
classical ‘box model’. Since the steady-state flow in this domain
controls the influx into the head region, the classical box model
approach, which is based on a control volume with homogeneous
time-dependency for the entire current, becomes inadequate. We
clearly need a different simplification.

We now face twomajor questions: (1) what is the location rJ(t)
of the boundary between the steady inner tail and annular head
(see Fig. 1)? The steady-state solution provides h, u as functions
of r in a quite simple way, but it does not provide any indication
of the domain of relevance at a given time t; (2) what is the flow
in the time-dependent domain close to the front of the current? It
is evident that such a domain must exist, because the steady-state
solution cannot bematched to the front condition (9). In particular,
it is important to be able to predict the propagation of the front,
rN(t), and the volume of fluid in the time-dependent domain. One
means for obtaining this information is by the numerical solution
of the shallow water equations, as done in [4]. This is an accurate,
but not a straightforward, method.

Here we derive a simple approximate solution, in the spirit
of the box model. Due to its simplicity, this model is particularly
convenient for applications and yet reveals considerable insight
into the underlying motion and is consistent with predictions
from the more complete shallow water equations. First, we
consider the motion of a homogeneous intruding fluid (Section 2)
and then a homogeneous gravity current propagating through
a uniform ambient (Section 3). At a later stage, we allow the
intrusion to contain a dilute suspension of settling particles,
such as ash particles as for a volcanic intrusion, and we
determine the influence of the motion on the distribution of the
particles (Section 4.1). We analyse sustained particle-driven flows
(Section 4.2) and, finally, present a short summary of the new
hybrid model in Section 5.

2. A hybrid model for intrusions

We introduce a newmodel that ismotivated by the numerically
computed and asymptotic solutions of the shallow water partial-
differential-equations [4] and yet the new approach retains many
of the simplifying features of box models. The solution realised
by the full system of equations has two distinct domains. In the
domain from the source to rJ(t), the flow is steady, and is given by a
steady-state solution of the shallowwater equations. At the front of
the current, in the domain rJ(t) ≤ r ≤ rN(t), the flow variables are
time-dependent and weakly spatially varying. For our new hybrid
model, we assume that the radial gradients of the depth-integrated
hydrostatic pressure field vanish across the frontal region, because
they are otherwise unbalanced in the radial momentum equation
on sufficiently short lengthscales, close to the front. Thus for an
intrusion, this implies that there are no spatial gradients of the
height field sufficiently close to the front; the flow here takes
the shape of an annulus of thickness 2hN(t) (see Fig. 1). The two
domains are connected by a jump at r = rJ(t), across which the
current expands from a half-thickness hJ− to hJ+ = hN , where the
latter is the depth at the front. The idea of this model is that the
steady shallow water solution in the r ≤ rJ(t) domain is simple,
and hence approximations are made only in the rJ(t) < r ≤ rN(t)
domain.

We orientate the coordinate axes so that z is vertical and
z = 0 is the neutral buoyancy line. Since the stratification of the
environment is constant (N 2

= constant), the intrusion spreads
symmetrically about z = 0 and has thickness 2h. Recalling that
the flow is driven by a sustained volume flux per unit radian q in
the upper half of the intrusion, we introduce a dimensional length
scale [q/N ]

1/3 and time scale 1/N , and henceforth use these two
to render all of the variables dimensionless.
2.1. The steady-state domain (ri < r < rJ(t))

Here we use the exact steady solution of the shallow water
equations (1) and (2), rendered dimensionless as described above.
Together these admit the constants of the motion

hur = 1 and h2
+ u2

= C2
0 , (12)

which represent mass conservation and the dimensionless energy
constant (see (7)). As described above, the constant C2

0 is prescribed
by the boundary conditions hi, ui at the inner radius ri and is given
by C2

0 = (1 + Fr2i )/(riFr i). After some algebra we obtain explicit
expressions for h(r) and u(r),

u2
=

1
2


C2
0 +


C4
0 − 4/r2


; (13)

h2
=

1
2


C2
0 −


C4
0 − 4/r2


=

2

C2
0 r2 +


(C2

0 r2)2 − 4r2
; (14)

(the latter form is useful for numerical computations and avoids
cancellation errors when r is large). The solutions (13) and (14)
are supercritical. There is an additional steady subcritical solution
but this is not realised by the flows under consideration here.
The steady-state h, u used here are consistent with the results of
Baines [23], but the novelty here is the realisation that this solution
must be joined to a region of unsteady evolution at the front.
Furthermore, it turns out that the tail contains only a relatively
small part of the influxed volume.

The dimensionless volume of the tail region per unit radian is

V1(t) =

 rJ (t)

ri
h(r)r dr. (15)

Since h(r) is given explicitly by (14), the integral is easily evaluated
when needed (we did this numerically, because the analytical
formula is awkward). We emphasise that this volume increases
with time because rJ increases. However, since the entire volume
of the intrusion increases like t , the proportion of fluid in the tail
region is V1(t)/t; as shown below, this is a decreasing function.

The domain from the axis r = 0 to ri is not treated in this model
as the source is assumed to be at the inlet radius ri. The constant
C2
0 is a boundary condition; it takes the value 2 when the flow is

critical (Fr i = 1) at ri = 1. We conclude that the flow in the tail
is known, and provided by simple formulae. However to make this
solution useful, we must determine the outer radius rJ(t) of this
domain. This requires the solution of the head domain, as shown
below.

2.2. The head region (rJ(t) < r < rN(t))

We consider now the region from rJ(t) to rN(t), in which we
have introduced the simplification that the intrusion is of constant
thickness 2hN(t) (see Fig. 1). This is the major simplification in our
description and is where this hybrid model shares some features
with ‘box’ models. Under this simplification, volume continuity in
the upper half of the intrusion yields

1
2


r2N(t) − r2J (t)


hN + V1(rJ) = t (16)

and hence

hN = 2(t − V1(rJ))/[r2N(t) − r2J (t)]. (17)

This leaves two unknowns, rN(t) and rJ(t). The first one is deter-
mined from the front condition (10), which in dimensionless form
is given by

drN
dt

=
F

√
2
hN . (18)
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Fig. 2. The positions of the front, rN (t) and shock, rJ (t), the height of the front, hN , the width of the front, rN − rJ and the proportion of the volume of fluid in the steady
tail V1/t as functions of time, for an intrusion. Here, and throughout this paper, hybrid model solutions are indicated by solid curves and shallow water solutions by dashed
curves. The leading-order asymptotic estimates for t ≫ 1 (derived in Section 2.4) are indicated with a dash-dotted curve.
We recall that rJ is the position of the jump; the conditions
uJ− and hJ− at r = rJ− are provided by the steady-state solution
(13) and (14). Denoting the speed of the jump by c ≡ drJ/dt , we
express volume and momentum balances across the jump to find
drJ/dt = max (0, c), where (see Appendix A)

c = uJ− −


1
3

hN

hJ−
(h2

N + h2
J− + hNhJ−)

1/2
. (19)

Here we impose drJ/dt ≥ 0 to avoid unphysical inward prop-
agation, which may otherwise occur during the initial phases.
This inward propagation results from the discrepancy between the
shallow-watermodel,whichpredicts some spatial variationwithin
the head region at very early times [4], and the hybrid model as-
sumption that the head is of uniform thickness. For given initial
conditions rJ and rN , we can calculate the subsequent propagation
by a simple numerical integration of the ODEs (18) and (19), and
the intrusion thickness at the front 2hN(t) is a by-product of this
calculation.

The input parameters of themodel are: at the source r = ri, and
ui/hi = Fr i, and hiuiri = 1; at the nose r = rN , uN/hN = F . Unless
stated otherwise, in figures we use ri = Fr i = 1, and F = 1.19. In
Section 2.4 we will calculate the dependence of the flow at large
times on these parameters, and show in particular that the depen-
dence on the initial radius ri is remarkably weak, with rN scaling
as r−1/8

i . It is convenient to start the calculation with rN = rJ = ri,
and hN = hi at t = 0.

2.3. Comparison with solutions of the shallow-water model

In Fig. 2 we compare the results from our hybrid model with
those computed numerically from the shallow water equations,
using the same non-oscillatory numerical scheme as Johnson
et al. [4]. The agreement is very good over a long time of propaga-
tion, t = 103. (For an intrusion in the atmosphere, N = 0.01 s−1,
and a dimensionless time of t = 103 corresponds to about 28 h
of propagation and for application to a volcanic source, this corre-
sponds to a long duration eruption.) The absolute discrepancy be-
tween the models for rN increases with time, but is less than 2% at
t = 103; furthermore, the relative error diminishes. Both the shal-
low water solution and the hybrid model predict that most of the
volume is in the head region. At t = 103, the tail contains only 17%
of the volume according to the hybrid model (and 15% according
to the shallow water solution). Comparisons between results gen-
erated with other input parameters show similar agreement be-
tween the model and shallow water predictions.

2.4. Long-time asymptotes

Analysis of the governing shallow-layer equations indicates
that when t ≫ 1 the propagation is such that the intrusion
radius rN grows as t3/4 [4]. We show that this carries over to the
hybrid model; moreover, a simple calculation of the coefficient
multiplying this power of time is possible.

We postulate that for sufficiently long times (t ≫ 1), the lead-
ing terms behave like

rN = Ktβ; rN − rJ = Dtγ (20)

where K ,D, β, γ are positive constants, whichwill be determined.
Physical considerations indicate that β < 1 (otherwise the nose
accelerates to infinity). Our model assumes that the head is a thin
annulus, and hence we assume (and later confirm) that β > γ .
This implies that (rN − rJ)/rN ≪ 1. We keep in mind that large t
also means large rJ and rN .

For r ≫ 1, from (12), (13), and (20), we obtain, to leading order,

uJ− = C0 and hJ− = 1/(uJ− rJ) = 1/(C0rN). (21)

We now analyse the speed of the jump at rJ , (19). The first term on
the RHS, uJ− , is now a constant. However, in view of (20), drJ/dt
behaves like drN/dt , which is expected to decay like tβ−1. Conse-
quently, to leading order, the second term on the RHS of (19) must
cancel the first one. We also expect that hN dominates hJ− (this is
confirmed by (25) below). Therefore, (19) produces the balance

u2
J− = (1/3)h3

N/hJ− , (22)

rewritten, using (21), as

3C0 = h3
N rN = h3

NKt
β . (23)

On the other hand, the front condition is

drN
dt

= βKtβ−1
=

F
√
2
hN , (24)
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or

hN = (
√
2/F)βKtβ−1. (25)

We substitute this hN into (23). Equating powers of t and the coef-
ficients, we obtain

β =
3
4
; K 4

= 3C0


F

√
2β

3

. (26)

This prediction of our simplemodel is in good agreementwith very
recent experimental findings [21].

To determine D and γ we use the volume equation (per radian)
in the annulus of height hN about rN

hN rN(rN − rJ) = hN rNDtγ = t, (27)

where the last term is the volume supplied by the source. Substi-
tution of rN , hN in terms of K , t, β , and some algebra, yield

γ =
1
2
; D =

F
√
2β

K−2. (28)

This validates our initial assumption that β > γ and so rN ∼ t3/4,
while rN − rJ ∼ t1/2.

In (27)we assumed that there is no significant volume in the tail
(as compared to the total volume, which increases in proportion to
t). The justification is as follows. The thickness of the tail behaves
like 1/(C0r), see (21). We can thus estimate the relative amount of
the volume in the tail, as

V1

t
=

1
t

 rJ

ri
hr dr =

K
C0

t−1/4
+ · · · , (29)

where ri was neglected, and rJ = rN = Kt3/4 was used. Thus V1/t
diminishes as t increases (see Fig. 2(c)).

The leading-order asymptotic behaviour of the hybrid model
derived in this section is compared in Fig. 2 to numerical solutions
of the hybrid model. The trends t3/4 and t1/2 for rN and extent
of the annulus rN − rJ are observed from quite early times, say
t > 10.

We note that the coefficients K and D are the same as those
found for the complete late-time solutions to the full shallow-
water model [4]. This reflects the fact that the annulus, chosen
as a simplification for the shape of the head region in the hybrid
model, is in fact the leading-order shape of the head region at late
times in solutions to the full shallow-water governing equations.
In terms of the dynamics, it confirms that sufficiently close to the
front ((rN−r)/rN ≪ 1), which corresponds to the entire frontal re-
gion when t ≫ 1, gradients of depth-integrated hydrostatic pres-
sure vanish. We note also the counterintuitive dependence of K on
the inflow radius ri (given). For a constant volume flux and Froude
number at source, from (7) and (26) we determine that K ∼ r−1/8

i ,
that is, that the current radius at large times is a weakly decreasing
function of the source radius.

In summary, for t > 10, the motion predicted by the model
can be well approximated by the following simple lines. Recall-
ing that F refers to the generalised Froude number that enters
into the frontal boundary condition (10), the nose propagates with
rN = Kt3/4, the height is [3

√
2/(4F)]Kt−1/4, and the thickness of

the annulus is Dt1/2, where K ,D are given by the simple expres-
sions (26) and (28). The relative amount of volume in the tail is
fairly well estimated by (29). The powers of t are universal; the
boundary conditions influence only the coefficients.
3. A hybrid model for gravity currents

Solutions of the shallow-water governing equations (1) and (2)
for gravity currents (g ′ > 0) exhibit similar qualitative features to
those of intrusions, namely a tail region inwhich the flow is steady,
connected through a shock to a time-dependent head region at the
flow front (see, for example, the computations of Slim and Hup-
pert [20] when N 2

= 0). We therefore construct a similar hybrid
model to that obtained for intrusions in the previous section, for
gravity currents flowing beneath a stratified or unstratified envi-
ronment.

When considering gravity currents we render the variables di-
mensionless with respect to a lengthscale (q2/g ′)1/5 and timescale
(q/g ′3)1/5. In the steady-state ‘tail’, the continuity and momentum
equations (1) and (2) in dimensionless form are

hur = 1; and u2
+ 2h + σh2

= A2
0 (30)

which represent the constantmass flux and the Bernoulli constant,
respectively. Here σ ≡ N 2q2/5/g ′6/5 measures the dimensionless
strength of the stratification.

As before, A0 can be expressed in terms of a Froude at source
and the dimensionless radius at which the source conditions are
applied. Hence u(r), h(r) are given by the equations

u4
− A2

0u
2
+

2u
r

+
σ

r2
= 0; h =

1
ur

. (31)

An analytical solution to (31) is available, but a numerical New-
ton–Raphson iterative calculation of the relevant root is more con-
venient. Since we consider the domain r > ri, with a typical value
A2
0 = 3 + σ , a good starting value for the iterations is to use the

first two terms of the large r approximation, u = A0[1 − 1/(A3
0r)];

then, convergence to six–seven digits is achieved in 2–3 iterations.
As in the case of an intrusion, a steady flow is realised within a tail
region, between r = ri and r = rJ(t), and the volume per unit ra-
dian of this steady-state domain is given by V1(t) (15). Using (30)
and (31), this volume may be evaluated numerically.

Under the construction of the hybrid model, the annulus from
rJ(t) to rN(t) is of height hN(t) and, as with the case of intrusions,
volume continuity yields the expression for hN given by (17). The
unknown rN(t) is determined from the front condition (9), which
in nondimensional form is

drN
dt

= uN = F

hN +

σh2
N

2

1/2

. (32)

We recall that rJ is the position of the jump; the conditions uJ−

and hJ− at rJ− are provided by the steady-state solution at r = rJ .
In a frame moving with the speed of the jump (c = drJ/dt), we
write the volume and momentum balances; see Appendix A. Af-
ter some algebra, we obtain an equation for the second unknown
rJ(t), drJ/dt = max (0, c), where

c = uJ− −


hN

hJ−


1
2


hN + hJ−


+

σ

3


h2
N +hNhJ− + h2

J−

1/2
.

(33)
Given initial conditions for rJ and rN , we calculate the subsequent
propagation by numerically integrating of (32) and (33). The source
conditions are similar to the stratified model: ui = ri = hi = 1,
which gives A2

0 = 3 + σ and we start the temporal integration
from rN = rJ = ri.

The behaviour of this form of the hybrid model is rather similar
in character to the case of intrusions. In particular the hybridmodel
is capable of accurately reproducing the results of amore complete
numerical integration of the shallow water equations but with
much simpler and faster numerical methods. Comparisons to the
shallowwater solutions showvery good agreement, see Fig. 3; here
we have shown the detailed comparisons for σ = 0, but other
values yield similarly good agreement.
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Fig. 3. The positions of the front, rN (t) and shock, rJ (t), the height of the front, hN , the width of the front, rN − rJ and the proportion of the volume of fluid in the steady-state
tail V1/t as functions of time for gravity current propagation through an unstratified ambient (σ = 0). The hybrid model is indicated by solid curves, the shallow water
model by dashed curves, and the leading-order asymptotic expressions for large t as dash-dotted curves.
3.1. Long-time asymptotes

We use the hybrid model to draw out the long time behaviour
of sustained axisymmetric gravity currents in a homogeneous
ambient, N = 0 (or for small σ ). The analysis proceeds in an
analogous way to that for intrusions in Section 2.4. To this end we
pose

rN = Ktβ , rN − rJ = Dtγ , (34)

where K ,D, β, γ are positive constants to be determined. As
before we argue that γ < β < 1.

For large rJ , using an expansion in powers of (1/r) for (30) and
(31), we obtain, to leading order,

uJ− = A0; and hJ− = 1/(uJ− rJ) = 1/(A0rN). (35)

We now consider the shock speed (33). The first term on the
RHS,uJ− , is nowa constant. However, in viewof (34), cmust behave
like drN/dt , which is expected to decay with t . Consequently to
leading order, the second term in (33)must cancel the first one.We
also expect that 1 ≫ hN ≫ hJ− at large t (this is confirmed below).
The inequality 1 ≫ hN means that, at large times, terms resulting
from the stratification of the ambient are negligible compared to
those resulting from the difference in density between the current
and ambient (ρc − ρ0). At late times, (33) therefore produces the
balance

u2
J− = (1/2)h2

N/hJ− , (36)

rewritten, using (35) as

2A0 = h2
N rN = h2

NKt
β . (37)

On the other hand, the front condition, for large times when
hN ≫ σh2

N/2, is

drN
dt

= βKtβ−1
= Fh1/2

N , (38)

or

hN = (βK/F)2t2β−2. (39)
We substitute this hN into (37). Equating powers of t and the
coefficients, we obtain

β =
4
5
; K 5

= 2A0


F
β

4

. (40)

To determine D, γ we use the volume equation (per radian) in
the annulus of height hN about rN

hN rN(rN − rJ) = hN rNDtγ = t; (41)

where the last term is the volume supplied by the source. Substi-
tution of rN , hN in terms of K , t, β yields

γ =
3
5
; D =

F 2

β2
K−3. (42)

This validates our initial assumption that β > γ . Furthermore we
note that the relative amount of volume in the tail, V1/t , is given
by (K/A0)t−1/5.

The results rN = Kt4/5 and hN = (βK/F)2t−2/5 are in full
agreement with the long time behaviour of the shallow water so-
lution [20,4]. The asymptotes are also in good agreement with the
numerical solution of the hybridmodel. In all tested cases, the time
powers β = 4/5 and 3/5 for rN and rN −rJ are evident after t = 50.
The coefficients are also quite sharp. For example, for the case hi =

ui = ri = 1, F = 1.19, the prediction is K = 1.762, D = 0.405;
the numerical results at t = 103 are 1.611, 0.408, respectively. At
this time the tail still contains about 22% of the volume.

3.2. Comparison with solutions of the shallow-water model

In Fig. 4 we plot the position of the radial front as a function
of time for gravity currents through ambients with stratifications
characterised by σ = 0, 2 and 10. In terms of the dimensionless
variables used here, the stratification always enhances the rate of
propagation during the initial phases, but at late times the current
has become sufficiently thin so that it is not strongly affected by
the density variation within the ambient itself. From (32) and (40)
we may assess a dimensionless timescale at which the effects of
the stratification begin to diminish; this is given by σhN ∼ 1 and
thus t ∼ σ 5/2.
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Fig. 4. (a) The position of the front rN , and (b) thewidth of the frontal region rN −rJ ,
as functions of time for gravity currents propagating through an ambient with
dimensionless stratification σ = 0, 2 and 10. Hybrid model results are indicated
by solid curves, and shallow water solutions by dashed curves.

4. Particles: transport and sedimentation

Wenowanalyse the transport of suspensions of relatively dense
particles by these flows. In particular we examine two regimes;
the first is when the concentration of particles is sufficiently
dilute so that their presence does not significantly alter the bulk
density. This regime is relevant to sustained horizontal intrusions
of volcanic ash clouds, and to this endwe analyse particle transport
and settling when the flow dynamics are given by the hybrid
model as in Section 2. The second problem analysed here is
when the presence of the particles alone determines the excess
density of the current which moves through an otherwise uniform
environment. For this ‘particle-driven’ case the dynamics of the
current are strongly coupled to the evolution of the volume fraction
of particles. For both situations we demonstrate that the hybrid
model is an effective tool for calculating the transport of particles
and accumulation of the deposit with negligible computational
effort.

4.1. Particle-laden intrusions

Motivated by the application of the hybrid model for intrusions
to the motion of volcanic ash clouds, we limit the analysis to the
case of intrusions, and note that for the regimes discussed here, the
result for gravity currents is entirely analogous. We assume that
the volume fraction of the dispersed particles is small enough that
the contribution of particles to the bulk density is small, and hence
they are carried by the intrusion without affecting the dynamics of
the propagation. The simplest case is of a single dispersed species:
the volume fraction of particulate at the source, assumed constant,
is denoted by φ0, and the dimensionless settling speed, scaled
against (qN 2)1/3, is ws, approximately 10−4–10−2 for particles
10–100 µm in diameter in a typical volcanic plume.

In what follows, we compute the volume fraction of the
particles φ(r, t), scaled by its value at source φ0. We model the
particle transport and settling on the assumption that the intrusion
is sufficiently turbulent tomaintain awell-mixed layer of particles,
but that the particles settle out over the lower interface of the
intrusion. In view of the flow-field given by the hybrid model,
Fig. 5. The particle volume fractionφJ− at r = rJ and the average volume fraction in
the head φN , as functions of time, for a particle-laden intrusionwithws = 5×10−4 .
The hybrid model results are shown by solid curves and the shallow water results
by dashed curves.

the particle distribution has also two domains. The first domain,
ri ≤ r ≤ rJ(t), leads to a steady-state φ(r). In the second domain,
rJ(t) < r < rN(t), we assume a time-dependent volume fraction,
representative of the entire frontal region (φN(t)).

The particles settle out from the lower boundary of the intru-
sion. Therefore, the height under concern is 2h of the ‘upper half’
solved above (Fig. 1), and the scaled volume flux is 2rhu = 2. In the
tail domainweuse, again, the steady-state shallow layer equations,
in particular (3), which takes the dimensionless form

1
r

d
dr

(2hurφ) = −wsφ(r). (43)

The solution, subject to ruh = 1, is

φ(r) = exp


−
1
4
ws(r2 − r2i )


(ri ≤ r ≤ rJ(t)). (44)

This Gaussian concentration profile is in good agreement with the
existing steady-state theory [24].

For the time-dependent head domain, of volume V(t) =

t − V1(t), we need a conservation equation to determine the
concentration within the frontal region. Under the assumptions
of the hybrid model for these dilute intrusions, the height of the
frontal region is spatially invariant and so too is the volume fraction
of particles, φN(t). The volume of particles, φN(t)V(t), changes
because: (a) there is influx of suspended particles at rJ , with speed
uJ− − c , into the head domain; and (b) there is settling of particles
out of the lower boundary of the head domain. This we write as

d
dt

(φNV) = hJ−

uJ− − c


rJφJ− −

wsφNV

2hN
. (45)

This particle conservation equation is closed by integrating it
alongside the existing hybrid model equations for an intrusion,
(18) and (19), which govern the evolution of the location and speed
of the shock, rJ and c . We note that if no sedimentation (ws =

0) Eq. (45) implies that φN remains equal to its value at source
everywhere, and (45) then reduces to the volume conservation
within the head region. This hybrid model formulation for the
conservation of particles within the frontal region is able to
reproduce accurately the results of the more complete shallow
layer equations [4] (see Fig. 5).

We note that this procedure can be easily extended to several
species: under the assumption that there is no interaction between
species, the hybrid model equations (44) and (45) are simply
augmented with a particle conservation equation (45) for each
species of particles, each with the appropriate ws and φ0.

The volume flux per unit area of the particles which settle out
at position r at time t is wsφ0φN(r, t), for r ≤ rN(t) (and of course
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Fig. 6. (a) The distribution of the deposit, s(r, t) as a function of radial distance
as various instances of time, arising from settling from a particle-laden intrusion
with a nondimensional velocity ws = 10−2 and φM = 1. (b) The distribution of the
deposit scaled by the time elapsed, s(r, t)/t . The long-time scaled distribution for
the deposit, exp(−ws(r2 − r2i )/4), is plotted as a dash-dotted line. Vertical dotted
lines depict the initial radius of the intrusion.

zero at larger radii). Consequently, the thickness of the sediment
s(r, t) is given by

s(r, t) =
φ0ws

φM

 t

ts
φ(r, t ′) dt ′, (46)

where ts is the starting time for settling at a dimensionless distance
r from the origin, given by rN(ts) = r and φM is the volume fraction
corresponding to maximum packing within the deposit. With the
values of φ(r, t) provided by the hybrid model, the numerical
calculation of s(r, t) is straightforward; and example is illustrated
in Fig. 6. Apart from within the head of the intrusion, the volume
fractionφ attains the steady distribution given by (44). At relatively
long times (when w

1/2
s rJ(t) ≫ 1), most of the deposition from the

intrusion occurs in steady tail region, and thus we anticipate that
deposit will reflect the steady distribution (44). This is confirmed
by numerical calculations of the deposit thickness (Fig. 6(b)).

4.2. Particle-driven currents through uniform environments (σ = 0)

The dynamics of particle-driven currents are more complex
because progressive settling of the particles reduces the driving
gravitational force. The solution can be obtained as follows. First,
the steady equation (3) for the volume fraction φ(r), with d =

h(r) = 1/(u(r)r) is integrated and yields the dimensionless

φ(r) = exp

−

ws(r2 − r2i )
2


, φ′(r) = −wsrφ(r), (47)

where the prime denotes a derivative with respect to r .
The momentum equation (2) for the steady tail is expressed, in

dimensionless form, as

uu′
+ φh′

+
1
2
hφ′

= 0. (48)

Using hur = 1, after some manipulation we obtain

h′
=

h −
1
2 (hr)

3h φ′

(hr)3 φ − r
. (49)
From (15), the volume of the tail satisfies

V ′

1(r) = hr. (50)

The numerical integration of (49)–(50), aided by (47) and hur = 1,
provides the needed variables in the steady tail. When ri = ui =

h = 1, h′ is singular at this point, so we start the integration with
the approximation Fr i = 1.0001 at r = 1. In general, u(r) increases
with r to a constant, h decreases ∼1/r , and Vtail ∼ rJ . More details
will be given later.

We proceed by forming evolution equations for the radial
positions of the front and the shock, the volume fraction of particles
within the frontal region, φN and the volume of fluid within the
frontal region V = (r2N − r2J )hN/2, which are all assumed to be
functions only of time. Conservation of fluidmass is then expressed
by

V1(rJ) + V = t, (51)

while the dynamic condition at the front is given by

drN
dt

= F (φNhN)1/2 . (52)

Settling of particles follows the conservation law above (45) and in
this context is given by

d
dt

(φNV) = hJ−

uJ− − c


rJφJ− −

wsφNV

hN
. (53)

This may be re-written to express the evolution of φN , as

dφN

dt
= −

wsφN

hN
−

dV

dt
(φN − φJ−)

V
. (54)

Finally a jump condition is used to determine the shock speed
drJ/dt = max(0, c) (see Appendix A),

c = uJ− −


hN

2hJ−


φNh2

N − φJ−h2
J−

hN − hJ−

1/2

, (55)

where the conditions at r = rJ+ have been replaced with the time
varying, but spatially uniform quantities within the frontal region.
We integrate the systemof coupled differential equations from ini-
tial conditions rN = rJ = ri = 1, φN = 1. The agreement between
the hybrid model and the shallow water model is very good for a
range of dimensionless settling velocities (Fig. 7).

The use of the hybrid model to analyse the dynamics of sus-
tained, radially spreading, particle-driven gravity currents draws
out the key feature of their unsteady evolution. They feature a tail
within which the volume fraction φ(r) is in steady state and de-
cays exponentially with r2 (44), coupled to an unsteadily evolv-
ing front. Within this front, which is fed by the steady tail, the
time-dependent volume fraction decays due to sedimentation and
dilution by the influxed fluid; this balance is encompassed mathe-
matically by (54). The existence of the unsteady front is due to the
retardation of the current, here encapsulated through the imposi-
tion of a Froude number of order unity at the front of the motion
(52). There are thus potentially different lengthscales pertinent to
the motion within the steady-state tail and the unsteady front.

4.3. Long-time behaviour

In the steady-state tail, significant sedimentation occurs over a
dimensionless lengthscalew

1/2
s r , which is the e-folding lengthscale

of the volume fraction of suspended particles (see (44)). In the
regime of a relatively small dimensionless settling velocity (ws ≪

1), which is the regime of usual physical interest, the height and
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Fig. 7. The position of the front, rN (t), the width of the frontal region, rN − rJ
and the volume fraction of the front, φN as a function of dimensionless time for
ws = 0, 0.01 and 0.1. The solid line corresponds to the hybrid model; the dashed
line to computations of the complete shallow layer model.

velocity fields may be shown to satisfy (see Appendix B)

u2
+ 2φh = A2

≡


A3
0 − w1/2

s
3
2

 w
1/2
s r

0
exp(−s2/2) ds

2/3

. (56)

Furthermore when r ≫ 1, u = A and h = 1/(Ar) and

A3
→ A3

∞
≡ A3

0 − w1/2
s

3
√

π

2
√
2

as r → ∞. (57)

In the unsteady frontal region, we rescale the dimensionless
variables by writing

rN = R∞ r̂, t = T∞ t̂,

h = H∞ĥ and rN − rJ = T∞(H∞R∞)−1δ̂, (58)

where the latter scaling for the width of the frontal region is cho-
sen to ensure that the rescaling of the front is consistent withmass
conservation (51). For balance in the settling Eq. (54), we choose
H∞ = wsT∞, while for balance in the dynamic equation (52),
we choose R∞ = FT∞H1/2

∞ . To complete the rescaling we require
one further condition. One possibility is to assume that the radial
lengthscale is determined by the e-folding decay length of the vol-
ume fraction (44), so that R∞ = w

−1/2
s . However this is incon-

sistent with the jump condition between the steady and unsteady
regions (55). Instead, since φNh2

N ≫ φJ−h2
J− and hN ≫ hJ− , we find

that to leading order,

u2
J−hJ− =

1
2
φNh2

N + · · · (59)

and thus using (56), we chooseH2
∞

= A∞/R∞. The length and time
scales relevant to the unsteady front are thus given by

R∞ =


F 4A3

∞

w4
s

1/7

and T∞ =


A2

∞

w5
s F 2

1/7

. (60)
Fig. 8. (a) The front position, rN as a function of t for a range settling velocities,
Froude numbers and source radii; (b) the rescaled front position, r̂ as a function of
rescaled time t̂ . The curves are coded according to the value of the Froude number;
F = 1.19 (black); F = 1 (grey solid); and F = 0.72 (grey dashed).

We have integrated the hybrid model for a range of dimensionless
settling velocities ws = (0.5, 1.0, 2.0) × 10−2, Froude numbers
F = 1.19, 1, 0.72 and dimensionless source radii ri = 1, 2, 3, lead-
ing to variations in the value of A∞ and we plot the results for the
position of the front as a function of time (Fig. 8). In these figures,
we only plot the radial position up to times at which the volume
fraction, φN drops to 0.01. There is a wide range of behaviour as an-
ticipated because of the range of parameter values (Fig. 8(a)), but
when plotted in terms of the rescaled variables, r̂ as a function of
t̂ , the spread of behaviours is much less and the evolution follows
a ‘master curve’ more closely (Fig. 8(b)). At the times illustrated in
Fig. 8(b) there is still incomplete collapse of the results under this
rescaling. However, in the limit of large time, the rescalings R∞ and
T∞ exactly capture the dependence of the hybrid model solutions
on the dimensionless parameters ws, A∞ and F . We demonstrate
this by calculating the leading-order terms of the late-time asymp-
totic solution to the hybridmodel. Supposing as before that the hy-
brid model variables rN , rJ , hN and φN are proportional to a power
of time at late times, we find by substituting this power-law ansatz
into (51), (52), (54) and (59) that

r̂ = 2 · (3t̂)1/3 + · · · , ĥ = 3t̂/4 + · · · ,

δ̂ = 2/[3 · (3t̂)1/3] + · · · , φ = (16/9)t̂−7/3
+ · · · . (61)

The absence of any dependence on the dimensionless parameters
ws, A∞ and F reflects the appropriate choice of rescaled variables
(58) for the late time evolution.

Bonnecaze et al. [7] report experimental results of the radial
position of a particle-driven gravity current due to a sustained
flux within a ‘sector’ tank. They examined four conditions by vary-
ing the source flux, the size of particles and their initial concen-
tration. On the assumption that the sidewalls of the sector tank
played a negligible role, they modelled these currents using a ra-
dially spreading shallow layer model of the gravity current mo-
tion. They demonstrated that reasonably accurate predictions of
the experimentally-measured propagation could be obtained by
the numerical integration of the governing equations, using a con-
stant Froude number F = 0.72 in the condition at the front (9); the
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Fig. 9. The experimentallymeasured front position of a radially spreading particle-
driven gravity current as function of time. In (b) the data is plotted in terms of the
rescaled variables r̂ and t̂ . The grey curves correspond to numerical results from
the hybrid model with parameters corresponding to each of the four experiments,
and using the value F = 0.72 suggested by [7]. (×: q = 130 cm3 s−1, g ′

0 =

10 cm s−2, ws = 0.36 cm s−1 . +: q = 130 cm3 s−1, g ′

0 = 20 cm s−2, ws =

0.36 cm s−1 . �: q = 130 cm3 s−1, g ′

0 = 10 cm s−2, ws = 0.17 cm s−1 . ◦:
q = 75 cm3 s−1, g ′

0 = 10 cms−2, ws = 0.17 cm s−1).
Source: Data from [7].

agreement is quite good only during the initial stages, after which,
as the motion slows, viscous forces potentially begin to play a role.
These results are plotted in Fig. 9(a), (b). Here we plot the dimen-
sional data and also this data replotted in terms of the re-scaled
variables r̂ and t̂ . We note that this rescaling has collapsed the
data to a single ‘master curve’, which is reasonably well fitted by
a representative curve from the hybrid model with F = 0.72, the
value suggested by Bonnecaze et al. [7] for continuously-supplied
particle-driven flows.

5. Summary

The hybrid model has been shown to reproduce accurately the
motion of sustained, radially spreading, buoyancy-driven flows in
scenarios where conventional integral model and naive scaling
analyses fail. The new model exploits the structure of the flow,
namely a steady-state tail and an unsteady head, to derive a re-
duced model in terms of just a few coupled ODEs that are sim-
ple to solve numerically. Results for compositionally-driven flows
follow exactly the same behaviour as that found by numerically in-
tegrating the unsteady shallowwater equations at long times after
release. Moreover the hybrid model captures satisfactorily the ini-
tial behaviour and because it introduces no adjustable parameters,
it provides a very useful tool for computing the behaviour of a num-
ber of environmentally relevant flows, such as the propagation of
volcanic ash intrusions.

By ‘no adjustable parameters’ we mean that the hybrid model
uses exactly the same input parameters as the more complex
shallow-water model, and no manipulation or addition of param-
eters wasmade for achieving the reported agreement between the
models. Admittedly, in the problemunder investigation F is a semi-
empirical, or empirical, value. Our point is that we use an ‘off the
shelf’ number. The agreement with the shallow-water solution is
good when the same F is used in both models.

A clear-cut outcome of our analysis is that in cases of interest
(when the radius of propagation is large compared to that of
the source) the major part of the influxed volume is in the head
domain, not in the steady-state tail. On the other hand, the head
plays a minor role in the sedimentation of particles because the
fluid that is influxed into the head loses particles along the way;
under the assumption of our model that particles are vertically
well-mixed within the current, φ decays exponentially with r2
in the tail. These observations may be of importance in the
understanding of the spread of volcanic clouds.

Due to its simplicity, the hybridmodel can be easily used for the
investigation of other effects of interest in the context of volcanic
plumes, such as the propagation of the plume after the source is
stopped at some te (after the eruption ceases), or the influence of
different values of ri, which is determined by conditions at the vent
of the volcano and the dynamics of the vertically-rising portion of
the plume. On the other hand, we note that numerous practical
applications are incompatible with the axisymmetric assumption
of the present model, such as the influence of winds on volcanic
plumes [23]. A quite complicated modification of the model is
needed to relax the assumption of axisymmetry. These topics
require additional work and are left for future papers. Additionally,
at late times in a volcanic eruption, centrifugal-Coriolis effects due
to the rotation of the Earth become important, and an extension
of the hybrid model which takes these effects into consideration is
under way.

The hybrid model has also been applied to sustained particle-
driven flows, demonstrating its success in accurately representing
the motion in terms of a simple set of governing ODEs. Here
a very considerable advantage is that the model reveals the
lengthscales and timescales for the runout of these flows, in terms
of the fundamental parameters that characterise themotion. These
scales, given in dimensional form by

R∞ =


F 4A3

∞
q3

w4
s g ′

1/7

and T∞ =


A2

∞
q2

w5
s g ′3F 2

1/7

, (62)

are therefore the analogy for sustained radial currents of ‘box’
model scalings for instantaneous slumps of suspended particles.
They provide important quantitative insights into how the motion
is influenced by particle settling that progressively reduces the
buoyancy of the current.
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Appendix A. The jump conditions at rJ

The speed, height and volume fraction formulae at the jump
at rJ are obtained as follows. The dependent variables before the
jump are denoted by hJ−, uJ− and φJ− and after the jump are given
by hJ+, uJ+ and φJ+. In the cases of interest hJ+ > hJ−. We use a
control volume of height H and with a width much smaller than
rJ , allowing curvature terms due to the axisymmetric geometry to
be neglected. This control volume moves with the jump at speed
c = drJ/dt in positive r direction, andwe denote the radial velocity
in this frame of reference by u′

= u − c.
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In thismoving frame of reference, we impose continuity of fluid
and particle volume flux and balance the inviscid momentum flux.

qJ = u′

J−hJ− = u′

J+hJ+, (A.1)

qJφJ− = qJφJ+, (A.2)

q(ρcJ+u′

J+ − ρcJ−u′

J−) = FJ; (A.3)

where

FJ =

 H

0
pJ−(z) dz −

 H

0
pJ+(z) dz (A.4)

is the net pressure force, and ρc is the density of the current. The
height H must encompass the current. We assume that hJ+ > hJ−
and hence H = hJ+ can be taken.

Combining (A.1) and (A.3), we can write

(u′

J−)2
hJ−

hJ+
(hJ− − hJ+) = FJ/ρ. (A.5)

Recalling that u′

J− = uJ− − U , we note that U < uJ−, to ensure
that energy is dissipated rather than created at the jump [25]. The
relevant jump speed result is therefore

U = uJ− −


hJ+

hJ−

1
hJ− − hJ+

(FJ/ρ)

1/2
. (A.6)

The calculation of FJ uses the facts: (1) the pressure is hydro-
static on both sides of the jump, in both the current and the ambi-
ent fluids; the hydrostatic pressure, on either side of the jump, is
continuous at the interface z = hi. In what follows, the subscripts
a, c denote the ambient and the current, respectively.

We use the one-layer shallow water pressure calculations (see
[14, Section 12.2]). Briefly: the density of the current is the con-
stantρc , and of the ambientρc+λz, whereλ = dρa/dz = constant
(negative). We employ the hydrostatic equation and continuity of
pressure at the interface, and obtain:

pa = −ρ0gz −
1
2
λgz2;

pcJ± = (ρc − ρ0)ghJ± − ρcgz −
1
2
λgh2

J±.

(A.7)

In the calculation of FJ over z ∈ [0, hJ+] the integral on the
r = rJ− side is performed on both pcJ− (over [0, hJ−]) and pa (over
[hJ−, hJ+]); on the r = rJ+ side, the integration is performed only
over pcJ+ (over [0, hJ+]). The result is

FJ/ρ0 =
g
2

ρc − ρ0

ρ0


h2
J− − h2

J+


+

1
3


−λg
ρc

 
h3
J− − h3

J+


(A.8)

=
g ′

2


h2
J− − h2

J+


+

N 2

3


h3
J− − h3

J+


. (A.9)

Substitution into (A.5) and adopting dimensionless hybrid model
variables yields, after some algebra, (19) and (33).

Appendix B. The steady inviscid tail of particle-driven gravity
currents

For sustained flows through a uniform environment due to a
density difference associated only with the presence of suspended
relatively dense particles, the dimensionless governing equations
are

ruh = 1, (B.1)

φ = exp


−
ws(r2 − r2i )

2


(B.2)
and

1
r

d
dr


ru2h


+

1
2

d
dr


φh2

= 0. (B.3)

In this appendix, we examine the far-field form of such flows,
based on the assumption that the dimensionless settling velocity is
small (ws ≪ 1). This introduces a long radial lengthscale of order
w

−1/2
s ≫ ri, over which significant settling occurs, while the flow

speed and depth adjust to the local pressure gradients over much
shorter radial distances. We employ the method of multiple scales
to deduce the form of these fields. Thus we treat the height and
velocity as functions of both r and R = w

1/2
s r , while the volume

fraction is given by

φ = exp(−R2/2). (B.4)

Embedding this into the governing equation gives
∂

∂r
+ w1/2

s
∂

∂R

 
u2

+ 2φh


= −w1/2
s φRh, (B.5)

subject to u2
+ 2φh = A2

0 at r = ri. Seeking solutions of the form
u = u0 + w

1/2
s u1 + · · · and h = h0 + w

1/2
s h1 + · · · , we find that at

leading order

u2
0 + 2φh0 = A2(R), (B.6)

where A(R) is determined by expanding to O(w
1/2
s ) and applying

a consistency condition to keep u1 smaller than u0 in the far-field.
This demands

∂

∂R


A2

= − exp(−R2/2)Rh. (B.7)

In the far field (r ≫ 1), we find that u = A + · · · and h =

1/(Ar) + · · · . Thus we find that

∂

∂R


A2

= −
w

1/2
s exp(−R2/2)

A
, (B.8)

and this may be integrated to give

A(R)3 = A3
0 − w1/2

s
3
2

 R

0
exp(−s2/2) ds. (B.9)

This result is used in the long time reduction of the hybrid model
for particle-driven gravity currents. Recalling thatws ≪ 1, wemay
therefore evaluate the leading order expression for the velocity in
the far-field

A → A0 − w1/2
s

√
π

2
√
2

as R → ∞. (B.10)
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