Lecture 11

Sergei Fedotov

20912 - Introduction to Financial Mathematics
1. American Put Option Pricing on Binomial Tree

2. Replicating Portfolio
An American Option is one that may be exercised at any time prior to expire \((t = T)\).
• An American Option is one that may be exercised at any time prior to expire \((t = T)\).

• We should determine when it is best to exercise the option.

• It is not subjective! It can be determined in a systematic way!
An American Option is one that may be exercised at any time prior to expire \((t = T)\).

We should determine when it is best to exercise the option.

It is not subjective! It can be determined in a systematic way!

The American put option value must be greater than or equal to the payoff function.

If \(P < \max(E - S, 0) \), then there is obvious arbitrage opportunity.
• **An American Option** is one that may be exercised at any time prior to expire \((t = T)\).

• We should determine when it is best to exercise the option.

• It is not subjective! It can be determined in a systematic way!

• The American put option value must be greater than or equal to the payoff function.

If \(P < \max(E - S, 0)\), then there is obvious arbitrage opportunity.

We can buy stock for \(S\) and option for \(P\) and immediately exercise the option by selling stock for \(E\).
American Option

• An American Option is one that may be exercised at any time prior to expire \((t = T)\).

• We should determine when it is best to exercise the option.

• It is not subjective! It can be determined in a systematic way!

• The American put option value must be greater than or equal to the payoff function.

If \(P < \max(E - S, 0) \), then there is obvious arbitrage opportunity.

We can buy stock for \(S \) and option for \(P \) and immediately exercise the option by selling stock for \(E \).

\[E - (P + S) > 0 \]
We denote by P^m_n the n-th possible value of put option at time-step $m\Delta t$.
American Put Option Pricing on Binomial Tree

We denote by P^m_n the n-th possible value of put option at time-step $m\Delta t$.

- **European Put Option**:

 $$P^m_n = e^{-r\Delta t} \left(pP^m_{n+1} + (1 - p)P^m_{n+1} \right).$$

Here $0 \leq n \leq m$ and the risk-neutral probability $p = \frac{e^{r\Delta t} - d}{u - d}$.
American Put Option Pricing on Binomial Tree

We denote by P^m_n the n-th possible value of put option at time-step $m\Delta t$.

- **European Put Option:**

 \[P^m_n = e^{-r\Delta t} \left(pP^m_{n+1} + (1 - p)P^m_{n+1} \right). \]

 Here $0 \leq n \leq m$ and the risk-neutral probability $p = \frac{e^{r\Delta t - d}}{u-d}$.

- **American Put Option:**

 \[P^m_n = \max \left\{ \max(E - S^m_n, 0), e^{-r\Delta t} \left(pP^m_{n+1} + (1 - p)P^m_{n+1} \right) \right\}, \]

 where S^m_n is the n-th possible value of stock price at time-step $m\Delta t$.
American Put Option Pricing on Binomial Tree

We denote by P_{n}^{m} the n-th possible value of put option at time-step $m\Delta t$.

- **European Put Option:**
 \[
P_{n}^{m} = e^{-r\Delta t} \left(pP_{n+1}^{m+1} + (1 - p)P_{n}^{m+1} \right).
 \]
 Here $0 \leq n \leq m$ and the risk-neutral probability $p = \frac{e^{r\Delta t} - d}{u - d}$.

- **American Put Option:**
 \[
P_{n}^{m} = \max \left\{ \max(E - S_{n}^{m}, 0), e^{-r\Delta t} \left(pP_{n+1}^{m+1} + (1 - p)P_{n}^{m+1} \right) \right\},
 \]
 where S_{n}^{m} is the n-th possible value of stock price at time-step $m\Delta t$.

- **Final condition:** $P_{n}^{N} = \max \left(E - S_{n}^{N}, 0 \right)$, where $n = 0, 1, 2, ..., N$, E is the strike price.
We assume that over each of the next two years the stock price either moves up by 20% or moves down by 20%. The risk-free interest rate is 5%.

Find the value of a 2-year American put with a strike price of $52 on a stock whose current price is $50.
Example: Evaluation of American Put Option on Two-Step Tree

We assume that over each of the next two years the stock price either moves up by 20% or moves down by 20%. The risk-free interest rate is 5%.

Find the value of a 2-year American put with a strike price of $52 on a stock whose current price is $50.

In this case $u = 1.2$, $d = 0.8$, $r = 0.05$, $E = 52$.

Risk-neutral probability: $p = \frac{e^{0.05} - 0.8}{1.2 - 0.8} = 0.6282$
Example: Evaluation of American Put Option on Two-Step Tree

\[P_u = e^{-0.05 \times 1} (0.6282 \times 0 + 0.3718 \times 4) = 1.4147 \]
Example: Evaluation of American Put Option on Two-Step Tree

\[P_u = e^{-0.05 \times 1} (0.6282 \times 0 + 0.3718 \times 4) = 1.4147 \]

\[P_d = e^{-0.05 \times 1} (0.6282 \times 4 + 0.3718 \times 20) = 9.4636 \]
Example: Evaluation of American Put Option on Two-Step Tree

\[P_u = e^{-0.05 \times 1} (0.6282 \times 0 + 0.3718 \times 4) = 1.4147 \]

\[P_d = e^{-0.05 \times 1} (0.6282 \times 4 + 0.3718 \times 20) = 9.4636 \]

Payoff: \(E - S = 52 - 40 = 12 > 9.4636 \). Early exercise is optimal!

\[P_d = 12 \]
Example: Evaluation of American Put Option on Two-Step Tree

\[P_u = e^{-0.05 \times 1} (0.6282 \times 0 + 0.3718 \times 4) = 1.4147 \]

\[P_d = e^{-0.05 \times 1} (0.6282 \times 4 + 0.3718 \times 20) = 9.4636 \]

Payoff: \(E - S = 52 - 40 = 12 > 9.4636 \). Early exercise is optimal!

\[P_d = 12 \]

\[P_0 = e^{-0.05 \times 1} (0.6282 \times 1.4147 + 0.3718 \times 12) = 5.0894 \]
Example: Evaluation of American Put Option on Two-Step Tree

\[P_u = e^{-0.05 \times 1} (0.6282 \times 0 + 0.3718 \times 4) = 1.4147 \]

\[P_d = e^{-0.05 \times 1} (0.6282 \times 4 + 0.3718 \times 20) = 9.4636 \]

Payoff: \(E - S = 52 - 40 = 12 > 9.4636 \). Early exercise is optimal!

\[P_d = 12 \]

\[P_0 = e^{-0.05 \times 1} (0.6282 \times 1.4147 + 0.3718 \times 12) = 5.0894 \]

Payoff: \(E - S = 52 - 50 = 2 < 5.0894 \). Early exercise is not optimal at the initial node.
Replicating Portfolio

The aim is to calculate the value of call option C_0.

Let us establish a portfolio of stocks and bonds in such a way that the payoff of a call option is completely replicated.

Final value: $\Pi_T = C_T = \max (S - E, 0)$
The aim is to calculate the value of call option C_0.

Let us establish a portfolio of stocks and bonds in such a way that the payoff of a call option is completely replicated.

Final value: $\Pi_T = C_T = \max (S - E, 0)$

To prevent risk-free arbitrage opportunity, the current values should be identical. We say that the portfolio replicates the option.

The Law of One Price: $\Pi_t = C_t$.
Replicating Portfolio

The aim is to calculate the value of call option C_0.

Let us establish a portfolio of stocks and bonds in such a way that the payoff of a call option is completely replicated.

Final value: $\Pi_T = C_T = \max (S - E, 0)$

To prevent risk-free arbitrage opportunity, the current values should be identical. We say that the portfolio replicates the option.

The Law of One Price: $\Pi_t = C_t$.

Consider replicating portfolio of Δ shares held long and N bonds held short.
Replicating Portfolio

The aim is to calculate the value of call option C_0. Let us establish a portfolio of stocks and bonds in such a way that the payoff of a call option is completely replicated.

Final value: $\Pi_T = C_T = \max(S - E, 0)$

To prevent risk-free arbitrage opportunity, the current values should be identical. We say that the portfolio replicates the option.

The Law of One Price: $\Pi_t = C_t$.

Consider replicating portfolio of Δ shares held long and N bonds held short. The value of portfolio: $\Pi = \Delta S - NB$. A pair (Δ, N) is called a trading strategy.

How to find (Δ, N) such that $\Pi_T = C_T$ and $\Pi_0 = C_0$?
Example: One-Step Binomial Model.

Initial stock price is S_0. The stock price can either move up from S_0 to $S_0 u$ or down from S_0 to $S_0 d$. At time T, let the option price be C_u if the stock price moves up, and C_d if the stock price moves down.
Example: One-Step Binomial Model.

Initial stock price is \(S_0 \). The stock price can either move up from \(S_0 \) to \(S_0 u \) or down from \(S_0 \) to \(S_0 d \). At time \(T \), let the option price be \(C_u \) if the stock price moves up, and \(C_d \) if the stock price moves down.

The value of portfolio: \(\Pi = \Delta S - NB \).

When stock moves up: \(\Delta S_0 u - NB_0 e^{rT} = C_u \).

When stock moves down: \(\Delta S_0 d - NB_0 e^{rT} = C_d \).
Example: One-Step Binomial Model.

Initial stock price is S_0. The stock price can either move up from S_0 to S_0u or down from S_0 to S_0d. At time T, let the option price be C_u if the stock price moves up, and C_d if the stock price moves down.

The value of portfolio: $\Pi = \Delta S - NB$.

When stock moves up: $\Delta S_0u - NB_0e^{rT} = C_u$.

When stock moves down: $\Delta S_0d - NB_0e^{rT} = C_d$.

We have two equations for two unknown variables Δ and N.
Example: One-Step Binomial Model.

Initial stock price is S_0. The stock price can either move up from S_0 to S_0u or down from S_0 to S_0d. At time T, let the option price be C_u if the stock price moves up, and C_d if the stock price moves down.

The value of portfolio: $\Pi = \Delta S - NB$.

When stock moves up: $\Delta S_0u - NB_0e^{rT} = C_u$.

When stock moves down: $\Delta S_0d - NB_0e^{rT} = C_d$.

We have two equations for two unknown variables Δ and N.

Current value: $C_0 = \Delta S_0 - NB_0$.
Example: One-Step Binomial Model.

Initial stock price is S_0. The stock price can either move up from S_0 to S_0u or down from S_0 to S_0d. At time T, let the option price be C_u if the stock price moves up, and C_d if the stock price moves down.

The value of portfolio: $\Pi = \Delta S - NB$.

When stock moves up: $\Delta S_0u - NB_0e^{rT} = C_u$.

When stock moves down: $\Delta S_0d - NB_0e^{rT} = C_d$.

We have two equations for two unknown variables Δ and N.

Current value: $C_0 = \Delta S_0 - NB_0$.

Prove: $C_0 = e^{-rT}(pC_u + (1 - p)C_d)$, where $p = \frac{e^{rT} - d}{u - d}$. (Exercise sheet 5)