Practical Session

Do all calculations in double precision. Working together is fine. There are plenty of questions here: don’t feel you have to all of them. If something seems too easy or too difficult, feel free to skip it (some questions do build on preceding ones, though).

Note: throughout the tutorials, you can pass NULL as the value of the nagError pointer fail when calling any of the NAG routines.

1 Question 1

Write a function bs which takes the following inputs:

- \(S \): the initial stock price
- \(K \): the strike price
- \(T \): the maturity
- \(r \): the interest rate
- \(q \): the dividend rate
- \(\sigma \): the volatility

The function bs should call s30aac to return the price of a simple European call option. Use your function to price a call option with the following parameters:

\[
S = 100, \quad K = 90, \quad T = 1.5, \quad r = 0.03, \quad q = 0.015, \quad \sigma = 0.09
\]

1.1 Answer

You should get an answer of 12.35008695.

2 Question 2

Refer to the documentation for c05awc. We are now going to write a program to compute the Black Scholes implied volatility for a given call option price and set of parameters. In other words, given a call option price \(C \) and values of \(S, K, T, r, q \), find the value of \(\sigma \) so that the Black Scholes formula gives the price \(C \). Modify the function bs from Question 1 to have the prototype

\[
\text{double NAG_{CALL} bs(double sigma, Nag_Comm * comm)}
\]

In your \texttt{main} function, declare a \texttt{Nag_Comm} structure \texttt{comm} and allocate 6 doubles to the member \texttt{comm.user}. Define variables \(S, K, T, r, q \) and the target call option price \(\texttt{Ctarget} \). Assign \(S, K, T, r \) and \(q \) to the first 5 members of \texttt{comm.user} and \(\texttt{Ctarget} \) to the 6th member.

In your function \texttt{bs}, assign the first 5 members of \texttt{comm->user} to variables \(S, K, T, r \) and \(q \) and call \texttt{s30aac} to compute the price of a call option. Return the difference between this price and the 6th member of \texttt{comm->user}.

In \texttt{main}, call \texttt{c05awc} and pass it \texttt{bs} as the function of which the zero is to be computed. Set \(\texttt{eps = eta = 1.0e-6} \) and set \(\texttt{nfmax = 1500} \).

1. Use your program to compute the implied volatility for a (target) call option price of 12.35008695 and

\[
S = 100, \quad K = 90, \quad T = 1.5, \quad r = 0.03, \quad q = 0.015
\]

Use an initial guess of \(\sigma = 0.15 \).
2. Use your program to compute the implied volatility for a (target) call option price of 25.5 and

\[S = 100 \quad K = 90 \quad T = 1.5 \quad r = 0.03 \quad q = 0.015 \]

Use an initial guess of \(\sigma = 0.15 \).

2.1 Answer
1. You should get an answer of 0.090001.
2. You should get an answer of 0.429938.

3 Question 3

We now turn to simple Monte Carlo simulation. We will price a simple Black Scholes call option. In your main function, declare variables \(N, S, K, T, r \) and \(\text{sigma} \); two arrays \(\text{seed}[6] \) and \(\text{state}[70] \) of unsigned integers; and an array \(Z \) of doubles. Allocate \(N \) doubles for \(Z \) and set the first 6 elements of \(\text{seed} \) to the first 6 integers 1,2,3,4,5, and 6. Call \(\text{g05kfc} \) with \(\text{genid} = \text{Nag_MRG32k3a} \) and \(\text{subid} = 0 \), and pass in the \(\text{seed} \) and \(\text{state} \) arrays (remember to pass the address of \(\text{lstate} \)). Now call \(\text{g05skc} \) to generate \(N \) Normal random numbers (mean zero and variance one) in \(Z \). Use the random numbers to compute the Monte Carlo average

\[
\hat{C} = \frac{1}{N} \sum_{i=0}^{N-1} e^{-rT} \max \left\{ S \exp \left((r - q - \frac{1}{2} \sigma^2)T + \sigma \sqrt{T} Z[i] \right) - K, 0 \right\}
\]

for \(N = 1000000 \) and

\[S = 100 \quad K = 90 \quad T = 1.5 \quad r = 0.03 \quad q = 0.015 \quad \sigma = 0.09 \]

3.1 Answer
You should get an answer of 12.35136975.

4 Question 4

We modify the previous question to price a basket option. Add an integer \(A \) to the start of your main function, and create a correlation array \(\text{cor} \) of size \(A \times A \). Allocate \(N \times A \) doubles for \(Z \), call \(\text{g05kfc} \) as before and use \(\text{g05skc} \) to generate \(N \times A \) Normal random numbers (mean zero and variance one) in \(Z \). Now call \(\text{f07fdc} \) to obtain the Cholesky factorisation of the correlation matrix \(\text{cor} \): use \(\text{order=Nag_ColMajor}, \text{uplo=Nag_Lower} \) and \(\text{pda}=A \).

We need to multiply each \(A \)-dimensional vector of Normal random numbers by the Cholesky factorisation matrix. For this, call \(\text{f16yfc} \) with \(\text{order=Nag_ColMajor}, \text{side=Nag_LeftSide}, \text{uplo=Nag_Lower}, \text{trans=Nag_NoTrans}, \text{diag=Nag_NonUnitDiag} \) and \(\text{alpha}=1 \). For a pass in the matrix \(\text{cor} \) and for \(b \) pass in the array \(Z \); set \(m=A \), \(n=N \), \(\text{pda}=A \) and \(\text{pdb}=A \). Finally, use the (now correlated) Normal random numbers to compute the Monte Carlo sum

\[
\hat{C} = \frac{1}{N} \sum_{i=0}^{N-1} e^{-rT} \max \left\{ \frac{1}{A} X_i - K, 0 \right\}
\]

where

\[
X_i = \sum_{a=0}^{A-1} S_a \exp \left((r - \frac{1}{2} \sigma_a^2)T + \sigma_a \sqrt{T} Z[iA + a] \right)
\]
for $N = 50000$, $A = 5$, $K = 80$, $T = 1.5$, $r = 0.03$ and

\[
S = \begin{bmatrix} 100 & 90 & 80 & 70 & 60 \end{bmatrix} \\
\sigma = \begin{bmatrix} 0.04 & 0.06 & 0.07 & 0.10 & 0.15 \end{bmatrix} \\
\text{cor} = \begin{pmatrix}
1.0 & 0.3 & 0.4 & -0.7 & 0.0 \\
0.3 & 1.0 & 0.5 & -0.3 & 0.1 \\
0.4 & 0.5 & 1.0 & -0.2 & -0.5 \\
-0.7 & -0.3 & -0.2 & 1.0 & 0.4 \\
0.0 & 0.1 & -0.5 & 0.4 & 1.0 \\
\end{pmatrix}
\]

4.1 Answer
You should get an answer of 3.760712586.

5 Question 5
We now consider the Heston model. Use \texttt{s30nac} to price a call option in the Heston model with the following parameters:

- $S = 100$
- $K = 90$
- $T = 1.5$
- $r = 0.03$
- $q = 0.015$
- $\sigma_v = 0.09$
- $\kappa = 1$
- $\eta = 0.15$
- $\var_0 = 0.15$
- $\rho = 0.5$
- $\gamma = 0.5$

5.1 Answer
You should get an answer of 23.5895499.

6 Question 6
We now look at how to calibrate the Heston model. This is a much simplified version on what one has to do in practice, but the basic ideas are the same. Look at the documentation for \texttt{e04unc}. We are going to do a 3 parameter calibration with 3 input points (i.e. $n = m = 3$). The parameters from the Heston model we will calibrate will be r, σ_v, and η. All other parameters will be assumed known.

Create an \texttt{objfun} function with prototype

\[
\text{void NAG_CALL objfun(Integer m, Integer n, const double x[], double f[], double fjac[], \}
\text{Integer tdfjac, Nag_Comm *comm)}
\]

which can be passed to \texttt{e04unc}. Inside the function, assign the first three values of x to variables r, σ_v and η. From the \texttt{Nag_Comm} pointer \texttt{comm}, read all the remaining values K, S, T, κ, \var_0, ρ, γ, q from the member \texttt{comm->user} (remember there will be 3 values of K). Now call \texttt{s30nac} to get the prices of the m call options and write them into f.

In your \texttt{main} function, create a \texttt{NAG_E04_Opt} structure \texttt{options}, initialise it with \texttt{e04xxc} and set \texttt{options.obj_deriv = Nag_FALSE}. This means we will not have to compute derivatives of the Heston model: the solver will instead compute the derivatives numerically. The three points we will calibrate to are

\[
(K_1, C_1) = (90, 23.238062) \\
(K_2, C_2) = (100, 18.375622) \\
(K_3, C_3) = (110, 14.492988)
\]

Create a \texttt{Nag_Comm} structure \texttt{comm} and assign an array of 10 doubles to \texttt{comm.user}. Load the 3 strikes K_1, K_2, K_3, as well as all the other parameters S, T, q, κ, \var_0, ρ, γ into \texttt{comm.user}. Put
the values C_1, C_2, C_3 into an array y. Now create an array b_l of lower bounds for r, σ_v and η and give each element a value of 0.0001. Create a similar array b_u for the upper bounds and give r and η upper bounds of 100. Look at the s30nac documentation and work out what the upper bound of η should be (it’s best not to formulate this as a non-linear constraint, so work out what the linear equivalent is). Call e04unc with the following parameter values:

\begin{align*}
S &= 100 \\
v_0 &= 0.15 \\
T &= 1.5 \\
q &= 0.015 \\
\kappa &= 1 \\
\rho &= 0.5 \\
\gamma &= 0.5
\end{align*}

Use an initial guess for r, σ_v and η of

\begin{align*}
\widehat{r} &= 0.03 \\
\sigma_v &= 0.09 \\
\eta &= 0.15
\end{align*}

6.1 Answer

You should get an answer of $r = 0.070000$, $\sigma_v = 0.210001$ and $\eta = 0.049999$ with a final objective value of 5.7439487e-24.