Finite Difference - Crank Nicolson

Dr P. V. Johnson

School of Mathematics

2013
1 REVIEW

- Last time...
- Today’s lecture
1 Review
- Last time...
- Today’s lecture

2 Improved Finite Difference Methods
- The Crank-Nicolson Method
- SOR method
1 REVIEW
- Last time...
- Today’s lecture

2 IMPROVED FINITE DIFFERENCE METHODS
- The Crank-Nicolson Method
- SOR method

3 EXOTIC OPTIONS
- American options
- Convergence and accuracy
1 REVIEW
- Last time...
- Today’s lecture

2 IMPROVED FINITE DIFFERENCE METHODS
- The Crank-Nicolson Method
- SOR method

3 EXOTIC OPTIONS
- American options
- Convergence and accuracy

4 SUMMARY
- Overview
Introduced the finite-difference method to solve PDEs
Discetise the original PDE to obtain a linear system of equations to solve.
This scheme was explained for the Black Scholes PDE and in particular we derived the explicit finite difference scheme to solve the European call and put option problems.
• Introduced the finite-difference method to solve PDEs
• Discetise the original PDE to obtain a linear system of equations to solve.
• This scheme was explained for the Black Scholes PDE and in particular we derived the explicit finite difference scheme to solve the European call and put option problems.
• The convergence of the method is similar to the binomial tree and, in fact, the method can be considered a trinomial tree.
• Explicit method can be unstable - constraints on our grid size.
Here we will introduce the Crank-Nicolson method.

The method has two advantages over the explicit method:
- stability;
- improved convergence.

Here we will need to solve a matrix equation.
Here we will introduce the Crank-Nicolson method.

The method has two advantages over the explicit method:
- stability;
- improved convergence.

Here we will need to solve a matrix equation.

In addition we will discuss how to price American options and how to remove nonlinearity error in a variety of cases.
The Crank-Nicolson scheme works by evaluating the derivatives at $V(S, t + \Delta t/2)$.

The main advantages of this are:
- error in the time now $(\Delta t)^2$
- no stability constraints

Crank-Nicolson method is implicit, we will need to use three option values in the future $(t + \Delta t)$

to calculate three option values at (t).
Crank-Nicolson grid

Focus attention on i, j-th value V_j^i, and a little piece of the grid around that point.
Now take approximations to the derivatives at the half step $t + 1/2\Delta t$

They are in terms of V_j^i, as follows:

\[
\frac{\partial V}{\partial t} \approx \frac{V_{j+1}^i - V_j^i}{\Delta t}
\]

\[
\frac{\partial V}{\partial S} \approx \frac{1}{4\Delta S}(V_{j+1}^i - V_{j-1}^i + V_{j+1}^{i+1} - V_{j-1}^{i+1})
\]

\[
\frac{\partial^2 V}{\partial S^2} \approx \frac{1}{2\Delta S^2}(V_{j+1}^i - 2V_j^i + V_{j-1}^i + V_{j+1}^{i+1} - 2V_{j}^{i+1} + V_{j-1}^{i+1})
\]
Here the V^i values are all unknown, so...
 - rearrange our equations to have the known values on one side
 - the unknown values on the other.

\[
\frac{1}{4}(\sigma^2 j^2 - rj)V^i_{j-1} + \left(-\frac{\sigma^2 j^2}{2} - \frac{r}{2} - \frac{1}{\Delta t}\right)V^i_j + \frac{1}{4}(\sigma^2 j^2 + rj)V^i_{j+1} =
\]
\[
-\frac{1}{4}(\sigma^2 j^2 - rj)V^{i+1}_{j-1} - \left(-\frac{\sigma^2 j^2}{2} - \frac{r}{2} + \frac{1}{\Delta t}\right)V^{i+1}_j - \frac{1}{4}(\sigma^2 j^2 + rj)V^{i+1}_{j+1}
\]

- There is one of these equations for each point in the grid
Matrix equations

- We can rewrite the valuation problem in terms of a matrix as follows:

\[
\begin{pmatrix}
 b_0 & c_0 & 0 & 0 & . & . & . & . & 0 \\
 a_1 & b_1 & c_1 & 0 & . & . & . & . & . \\
 0 & a_2 & b_2 & c_2 & 0 & . & . & . & . \\
 . & 0 & a_3 & b_3 & c_3 & 0 & . & . & . \\
 . & . & . & . & . & . & . & . & . \\
 . & . & . & . & . & . & . & . & . \\
 0 & . & . & . & . & . & . & . & . \\
 0 & . & . & . & . & . & . & . & 0 \\
\end{pmatrix}
\begin{pmatrix}
 V_{i0} \\
 V_{i1} \\
 V_{i2} \\
 V_{i3} \\
 . \\
 . \\
 . \\
 V_{i j_{max} - 1} \\
 V_{i j_{max}} \\
\end{pmatrix} =
\begin{pmatrix}
 d_{i0} \\
 d_{i1} \\
 d_{i2} \\
 d_{i3} \\
 . \\
 . \\
 . \\
 d_{i j_{max} - 1} \\
 d_{i j_{max}} \\
\end{pmatrix}
\]
where:

\[a_j = \frac{1}{4}(\sigma^2 j^2 - rj) \]
\[b_j = -\frac{\sigma^2 j^2}{2} - \frac{r}{2} - \frac{1}{\Delta t} \]
\[c_j = \frac{1}{4}(\sigma^2 j^2 + rj) \]
\[d_j = -\frac{1}{4}(\sigma^2 j^2 - rj)V_{i+1}^{j-1} - \left(-\frac{\sigma^2 j^2}{2} - \frac{r}{2} + \frac{1}{\Delta t} \right)V_i^{j+1} \]
\[\quad -\frac{1}{4}(\sigma^2 j^2 + rj)V_{i+1}^{j+1} \]
Boundary conditions are an important part of solving any PDE.

For most PDEs we know the boundary conditions for large and small S.

For call options $a_{j_{\text{max}}} = 0$, $b_{j_{\text{max}}} = 1$,
$$d_{j_{\text{max}}} = S^u e^{-\delta(T-i\Delta t)} - X e^{-r(T-i\Delta t)}$$, $b_0 = 1$, $c_0 = 0$, $d_0 = 0$.

For put options $b_0 = 1$, $c_0 = 0$, $d_0 = X e^{-r(T-i\Delta t)}$, $a_{j_{\text{max}}} = 0$,
$$b_{j_{\text{max}}} = 1$$, $d_{j_{\text{max}}} = 0$.

In general we can always determine the values of b_0, c_0, d_0, $a_{j_{\text{max}}}$, $b_{j_{\text{max}}}$ and $d_{j_{\text{max}}}$ from our boundary conditions.
The Crank-Nicolson Method

- At each point in time we need to solve the matrix equation in order to calculate the V_j^i values.
- There are two approaches to doing this,
 - solve the matrix equation directly (LU decomposition),
 - solve the matrix equation via an iterative method (SOR).
- If possible, the LU approach is the preferred approach as it gives you an exact value for V_j^i and is much faster.
- However, not possible to use LU approach with American options.
- The SOR (Successive Over Relaxation) can be easily adapted to value American options.
The SOR method is a simpler approach but can take a little longer as it relies upon iteration.

If we consider each of the individual equations from $AV = d$ we have that

$$a_1 V_0^i + b_1 V_1^i + c_1 V_2^i = d_1^i$$
$$a_2 V_1^i + b_2 V_2^i + c_2 V_3^i = d_1^i$$
$$\cdots = \cdots$$
$$a_j V_{j-1}^i + b_j V_j^i + c_j V_{j+1}^i = d_j^i$$
$$\cdots = \cdots$$
$$a_{\text{jmax}-1} V_{\text{jmax}-2}^i + b_{\text{jmax}-1} V_{\text{jmax}-1}^i + c_{\text{jmax}-1} V_{\text{jmax}}^i = d_{\text{jmax}-1}^i$$
JACOBI ITERATION

- Rearrange these equations to get:

\[V_j^i = \frac{1}{b_j} (d_j^i - a_j V_{j-1}^i - c_j V_{j+1}^i) \]

- The Jacobi method is an iterative one that relies upon the previous equation.
 - Taking an initial guess for \(V_j^i \), denoted as \(V_j^{i,0} \)
 - Iterate using the formula below for the \((k + 1)\)th iteration:

\[V_j^{i,k+1} = \frac{1}{b_j} (d_j^i - a_j V_{j-1}^{i,k} - c_j V_{j+1}^{i,k}) \]

- Carry on until the difference between \(V_j^{i,k} \) and \(V_j^{i,k+1} \) is sufficiently small for all \(j \).
JACOBI ITERATION

- Rearrange these equations to get:

\[V_j^i = \frac{1}{b_j} (d_j^i - a_j V_{j-1}^i - c_j V_{j+1}^i) \]

- The Jacobi method is an iterative one that relies upon the previous equation.
 - Taking an initial guess for \(V_j^i \), denoted as \(V_j^{i,0} \)
 - Iterate using the formula below for the \((k+1)\)th iteration:

\[V_j^{i,k+1} = \frac{1}{b_j} (d_j^i - a_j V_{j-1}^{i,k} - c_j V_{j+1}^{i,k}) \]

- Carry on until the difference between \(V_j^{i,k} \) and \(V_j^{i,k+1} \) is sufficiently small for all \(j \).
- For Gauss-Seidel use the most up-to-date guess where possible:
The SOR method is another slight adjustment. It starts from the trivial observation that

\[V_{j}^{i,k+1} = V_{j}^{i,k} + (V_{j}^{i,k+1} - V_{j}^{i,k}) \]

and so \((V_{j}^{i,k+1} - V_{j}^{i,k})\) is a correction term.

Now try to over correct value, should work faster.

This is true if \(V_{j}^{i,k} \rightarrow V_{j}^{i}\) monotonically in \(k\).
The SOR method is another slight adjustment. It starts from the trivial observation that

\[V_{i,j}^{k+1} = V_{i,j}^k + (V_{i,j}^{k+1} - V_{i,j}^k) \]

and so \((V_{i,j}^{k+1} - V_{i,j}^k)\) is a correction term.

Now try to over correct value, should work faster.

This is true if \(V_{i,j}^{k+1} \to V_{i,j}^k\) monotonically in \(k\).

So the SOR algorithm says that

\[y_{i,j}^{k+1} = \frac{1}{b_j} (d_{i,j} - a_j V_{i,j-1}^{k+1} - c_j V_{i,j+1}^{k+1}) \]

\[V_{i,j}^{k+1} = V_{i,j}^k + \omega (y_{i,j}^{k+1} - V_{i,j}^k) \]

where \(1 < \omega < 2\) is called the over-relaxation parameter.
AMERICAN OPTIONS: EXPLICIT

- American option pricing problem requires an optimal early exercise strategy.
- To generate one, compare the continuation value with the early exercise value - take the larger.
- With the explicit finite difference method is pretty straightforward
 - calculate the continuation value CoV_j^i
 \[
 CoV_j^i = \frac{1}{1 + r\Delta t} (AV_{j+1}^i + BV_{j}^i + CV_{j-1}^i)
 \]
 - then compare this to the early exercise payoff.
American options: Explicit

- American option pricing problem requires an optimal early exercise strategy.
- To generate one, compare the continuation value with the early exercise value - take the larger.
- With the explicit finite difference method is pretty straightforward
 - calculate the continuation value CoV^i_j
 \[
 CoV^i_j = \frac{1}{1 + r\Delta t} (AV^i_{j+1} + BV^i_{j+1} + CV^i_{j-1})
 \]
 - then compare this to the early exercise payoff.
- Thus for a put:
 \[
 V^i_j = \max[X - j\Delta S, \frac{1}{1 + r\Delta t} (AV^i_{j+1} + BV^i_{j+1} + CV^i_{j-1})]
 \]
- This is similar to using the binomial tree
American put option: Explicit

\[V_j^i = \max[j\Delta S - X, \frac{1}{1+r\Delta t}(AV_j^{i+1} + BV_j^{i+1} + CV_j^{i+1})] \]

Move through “interior” of mesh/grid using this rule

Impose upper boundary at \(S_U \)

Impose lower boundary at 0
The American option pricing problem is slightly more complex for the Crank-Nicolson method.

Consider the process of calculating V^i_j...
The American option pricing problem is slightly more complex for the Crank-Nicolson method.

Consider the process of calculating V^i_j...

The value of the option V^i_j, for all values of j, depends also upon the value of V^i_{j-1} and V^i_{j+1}.

Optimally deciding when to early exercise requires that we already know these values.

If we early exercise at some point this could change V^i_j for all j.
PSOR

- A simple solution to this problem is to project our SOR method (Projected SOR).
- In order to project, check whether or not it would be optimal to exercise at each iteration.
A simple solution to this problem is to project our SOR method (Projected SOR).
In order to project, check whether or not it would be optimal to exercise at each iteration.
This changes

$$y_{j}^{i,k+1} = \frac{1}{b_{j}} (d_{j}^{i} - a_{j}V_{j-1}^{i,k+1} - c_{j}V_{j+1}^{i,k})$$

$$V_{j}^{i,k+1} = V_{j}^{i,k} + \omega (y_{j}^{i,k+1} - V_{j}^{i,k})$$

to (in the case of the American put option)

$$y_{j}^{i,k+1} = \frac{1}{b_{j}} (d_{j}^{i} - a_{j}V_{j-1}^{i,k+1} - c_{j}V_{j+1}^{i,k})$$

$$V_{j}^{i,k+1} = \max(V_{j}^{i,k} + \omega (y_{j}^{i,k+1} - V_{j}^{i,k}), X - j\Delta S)$$
CONVERGENCE

- If the option price and the derivatives are well behaved then the errors of the
 - Explicit method are $O(\Delta t, (\Delta S)^2)$
 - Crank-Nicolson method are $O((\Delta t)^2, (\Delta S)^2)$.

- These can be considered similar to the distribution error for the binomial tree.

- If convergence is smooth we can use extrapolation.
CONVERGENCE

- If the option price and the derivatives are well behaved then the errors of the
 - Explicit method are $O(\Delta t, (\Delta S)^2)$
 - Crank-Nicolson method are $O((\Delta t)^2, (\Delta S)^2)$.

- These can be considered similar to the distribution error for the binomial tree.

- If convergence is smooth we can use extrapolation.

- Finite-difference methods can suffer from non-linearity error if the grid is not correctly aligned with respect to any discontinuities
 - in the option value,
 - or in the derivatives of the option value.
Now have the freedom to construct the grid as desired.

- Makes it is simple to construct the grid so that you have a grid point upon any discontinuities.
- For example, if we consider an European call or put option then the only source of non-linearity error is at $S = X$ at expiry.
Now have the freedom to construct the grid as desired.

Makes it is simple to construct the grid so that you have a grid point upon any discontinuities.

For example, if we consider an European call or put option then the only source of non-linearity error is at $S = X$ at expiry.

Always choose ΔS so that $X = j\Delta S$ for some integer value of j.

So if in this case $S_0 = 100$ and $X = 95$, you need a suitably large S^U and a ΔS which is a divisor of 95.
Barrier options

- When pricing barrier options, there is a large amount of non-linearity error that comes from not having the nodes in the tree aligned with the position of the barrier.
- Thus with barrier options we have two sources of non-linearity error
 - the error from the barrier
 - the error from the discontinuous payoff.
When pricing barrier options, there is a large amount of non-linearity error that comes from not having the nodes in the tree aligned with the position of the barrier.

Thus with barrier options we have two sources of non-linearity error:
- the error from the barrier
- the error from the discontinuous payoff.

Simply match the grid to the barrier and the payoff.

For a down and out barrier option choose S_L (the lower value of S) to be on the barrier and then, as in the previous example, choose ΔS so that the exercise price is also on a node.
OVERVIEW

- We have introduced the Crank-Nicolson finite difference method.
- It is:
 - slightly harder to program;
 - has faster convergence;
 - better stability properties.
Overview

- We have introduced the Crank-Nicolson finite difference method.
- It is:
 - slightly harder to program;
 - has faster convergence;
 - better stability properties.
- Applying the method to American options requires the use of PSOR
- more complex than the method for valuing American options using the explicit method.
- Can choose the dimensions of the grid so as to remove the nonlinearity error.