Lecture 4: Derivatives

Dr P. V. Johnson

School of Mathematics

Introduction to Financial Mathematics, 2015
Lecture 4

1. Financial Derivatives
2. European Call and Put Options
3. Payoff Diagrams, Short Selling and Profit
A Derivative is a financial instrument whose value depends on the values of other underlying variables. Other names are financial derivative, derivative security, derivative product. A stock option, for example, is a derivative whose value is dependent on a stock price.

Examples: forward contracts, futures, options, swaps, CDS, etc.

Options are very attractive to investors, both for speculation and for hedging.

So what is an Option?
Definition

European call option gives the holder the right (not obligation) to buy underlying asset at a prescribed time T for a specified (strike) price E.

European put option gives its holder the right (not obligation) to sell underlying asset at a prescribed time T for a specified (strike) price E.

The question is:

“What does this actually mean?”
Example: European Call Options

Consider a three-month European call option on a BP share with a strike price $E = 15$ ($T = 0.25$). If you enter into this contract you have the right but not the obligation to buy one share for $E = 15$ in a three months time.

Whether you exercise your right depends on the stock price in the market at time T:

- If the stock price is above £15, say £25, you can buy the share for £15, and sell it immediately for £25, making a profit of £10.
- If the stock price is below £15, there is no financial sense to buy it. The option is worthless.
We denote by $C(S, t)$ the value of European call option and $P(S, t)$ the value of European put option.

Definition

Payoff Diagram is a graph of the value of the option position at expiration $t = T$ as a function of the underlying stock price S.

Call price at $t = T$:

$$C(S, T) = \max (S - E, 0)$$

$$= \begin{cases}
0, & S \leq E, \\
S - E, & S > E,
\end{cases}$$
Put price at $t = T$:

$$P(S, T) = \max (E - S, 0)$$

$$= \begin{cases}
 E - S, & S \leq E, \\
 0, & S > E,
\end{cases}$$

If a trader thinks that the stock price is on the rise, he can make money by purchasing a call option without buying the stock. If a trader believes the stock price is on the decline, he can make money by buying put options.
The profit (gain) of a call option holder (buyer) at time T is

$$\max (S - E, 0) - C_0 e^{rT},$$

where C_0 is the initial call option price at $t = 0$.

Example:
Find the stock price on the exercise date in three months, for a European call option with strike price £10 to give a gain (profit) of £14 if the option is bought for £2.25, financed by a loan with continuously compounded interest rate of 5%.

Solution:
$$14 = S(T) - 10 - 2.25 \times e^{0.05 \times \frac{1}{4}},$$

$$S(T) = 26.28$$

For the holder of European put option, the profit at time T is

$$\max (E - S, 0) - P_0 e^{rT}$$
Definition

Short selling is the practice of selling assets that have been borrowed from a broker with the intention of buying the same assets back at a later date to return to the broker.

This technique is used by investors who try to profit from the falling price of a stock.

Definition

Portfolio is a combination of assets, options and bonds.

We denote by Π the value of a portfolio. Example: $\Pi = 2S + 4C - 5P$.

It means that the portfolio consists of long position in two shares, long position in four call options and a short position in five put options.
Option positions

\[C(S, T) \text{ Long Call} \]

\[P(S, T) \text{ Long Put} \]

\[-C(S, T) \text{ Short Call} \]

\[-P(S, T) \text{ Short Put} \]
Straddle is the purchase of a call and a put on the same underlying security with the same maturity time T and strike price E.

The value of portfolio is $\Pi = C + P$

- Straddle is effective when an investor is confident that a stock price will change dramatically, but is uncertain of the direction of price move.
Example of large profits: $S_0 = 40$, $E = 40$, $C_0 = 2$, $P_0 = 2$.
Can you find the expected return if the stock price at T is given by the following tree?

$$S_0 = 40 \xrightarrow{p = \frac{3}{4}} 60 \xleftarrow{p = \frac{1}{4}} 20$$

Ans: 400%