Lecture 18

1. Measure of Future Values of Interest Rate

2. Term Structure of Interest Rates (Yield Curve)
Recall that the solution of the zero-coupon bond is

\[V(t) = F \exp \left(- \int_t^T r(s) ds \right). \]

Now let us introduce the notation \(V(t, T) \) for bond prices. Bond prices are usually quoted at time \(t \) for different values of \(T \).

Let us differentiate \(V(t, T) \) with respect to \(T \):

\[
\frac{\partial V(t, T)}{\partial T} = F \exp \left(- \int_t^T r(s) ds \right) (-r(T)) = -V(t, T)r(T),
\]

therefore

\[
r(T) = -\frac{1}{V(t, T)} \frac{\partial V(t, T)}{\partial T},
\]

This is the interest rate at the future date \(T \) (forward rate).
Term Structure of Interest Rates (Yield Curve)

We define

\[Y(t, T) = -\frac{\ln(V(t, T)) - \ln(V(T, T))}{T - t}, \]

as a measure of the future values of interest rate, where \(V(t, T) \) is taken from financial data.

Then we can write

\[Y(t, T) = -\frac{\ln \left(F \exp \left(-\int_t^T r(s)ds \right) \right) - \ln F}{T - t} \]

so that

\[Y(t, T) = \frac{1}{T - t} \int_t^T r(s)ds \]
We can say that \(Y(t, T) \) is the average value of the interest rate \(r(t) \) in the time interval \([t, T]\). Therefore the bond price can be written as

\[
V(t, T) = F e^{-Y(t,T)(T-t)}
\]

We define the term structure of interest rates (yield curve):

\[
Y(0, T) = -\frac{\ln(V(0, T)) - \ln(V(T, T))}{T} = \frac{1}{T} \int_0^T r(s) ds
\]

as the average value of interest rate in the future.
Assume that the instantaneous interest rate $r(t)$ is

$$r(t) = r_0 + at,$$

where r_0 and a are positive constants.

Bond Price:

$$V(t, T) = Fe^{-\int_t^T r(s)ds} = Fe^{-\int_t^T (r_0+as)ds}.$$

$$V(t, T) = Fe^{-r_0(T-t)-\frac{a}{2}(T^2-t^2)}.$$

Term structure of interest rate:

$$Y(0, T) = \frac{1}{T} \int_0^T r(s)ds = r_0 + \frac{aT}{2}.$$
Risk of Default

There exists a risk of a default bond, \(V(t, T) \), when the principal is not paid to lender as promised by the borrower.

How can we take this into account?

Consider a 1 year bond, \(V(0, 1) \), that has probability \(p \) of defaulting on repayments.

Bond Tree:

\[V(0, 1) \]

\[p \]

\[0 \]

\[1 - p \]

\[F \]

Price:

\[V(0, 1) = e^{-r}(F(1 - p) + 0.p) \]

and therefore the yield is

\[Y(0, 1) = -\ln(e^{-r} F(1 - p)) + \ln F \]

\[Y(0, 1) = r - \ln(1 - p) \]
Risk of Default

In this case the bond has a yield of the form

\[Y(0, 1) = r + s \]

and the positive parameter \(s \) is called the yield spread w.r.t risk-free interest rate \(r \).

Let us find it:

\[
 s = -\ln(1 - p) = p + O(p^2) \approx p
\]

which means that the spread is approximately the probability of default in that year.

In fact, if we model default as a Poisson process with intensity \(\lambda(t) \) we find the yield spread is

\[
 s(T) = \frac{1}{T} \int_0^T \lambda(s) ds
\]