2.1. Show that $A_2(3, 2) = 4$ by writing down a suitable code with four elements and then showing that it is impossible to find one with more elements. [The last part might be slightly easier if you use Lemma 6.]

2.2. Generalize the previous question by showing that $A_2(n, 2) = 2^{n-1}$. This time use the Corollary to Theorem 10 and Proposition 4.

2.3. Prove that the ternary code (that is, a code over \mathbb{F}_3)

$$C = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

is equivalent to the ternary repetition code of length 3.

2.4. Show that if C is a perfect q-ary code, where q is a power of a prime number p, then the number of codewords must be a power of p.

2.5. Prove that every perfect code has odd distance. [This is not too hard to see geometrically: consider the “midpoint” between two codewords. It is trickier to write down properly.]

2.6. We know that E_n, the code of all even-weight vectors of $\mathbb{F}_2(n)$ is linear. What are the parameters $[n, k, d]$ of E_n? Write down a generator matrix for E_n in standard form.

2.7. Let H be an $r \times n$ matrix over \mathbb{F}_q. Prove that the set

$$C = \left\{ \bar{x} \in \mathbb{F}_q^{(n)} \mid \bar{x}H^T = \bar{0} \right\}$$

is a linear code. [Remark: we will show later that every linear code may be defined by means of such a matrix H, which is called a parity-check matrix of the code.]

2.8. Show that if C is a binary linear code, then the code obtained by adding an overall parity check to C is also linear.

2.10. Prove that in a binary linear code, either all the codewords have even weight or exactly half have even weight and half have odd weight.

2.11. Let C_1 and C_2 be binary linear codes having the generator matrices

$$G_1 = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

and

$$G_2 = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}.$$

List the codewords of C_1 and C_2 and hence find the minimum distance of each code.

2.12. Let C be the ternary linear code with generator matrix

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix}.$$

List the codewords of C and find the minimum distance of C. Deduce that C is a perfect code.

2.13. Let C be the binary linear code with generator matrix

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}.$$

Find a generator matrix for C in standard form.