Chapter 2
Open and Closed Sets

Lecture 5

Given any metric space \((X,d)\), it is extremely important to generalise the notion of an open ball. So throughout this section, let \(U \subseteq X\) be an arbitrary subset.

Definition 2.1. An **interior point** \(u \in U\) is one for which there exists \(\epsilon > 0\) such that \(B_\epsilon(u) \subseteq U\); the **interior** of \(U\) is the subset \(U^o \subseteq U\) of all interior points. If \(U^o = U\), then \(U\) is **open** in \(X\).

So \(U\) is open precisely when every \(u \in U\) admits a \(B_\epsilon(u) \subseteq U\); in general, the choice of \(\epsilon\) depends on \(u\).

Proposition 2.2. Every open ball \(B_r(x)\) is open in \(X\).

Proof. Choose \(u \in B_r(x)\), let \(s = d(x,u) < r\), and consider \(y \in B_{r-s}(u)\); then
\[d(x,y) \leq d(x,u) + d(u,y) < s + (r-s) = r\]
by the triangle inequality, so \(y \in B_r(x)\). Hence \(B_{r-s}(u) \subseteq B_r(x)\), as required. \(\Box\)

Of course, Proposition 2.2 provides a host of examples; but there are others!

Examples 2.3.

1. Any union \(B_1 \cup B_2\) of two open balls is open; for \(u \in B_1\) implies that \(B_\epsilon(u) \subseteq B_1 \subseteq B_1 \cup B_2\), and similarly if \(u \in B_2\).

2. The complement \(U := X \setminus B_r(x)\) of a closed ball is given by \(\{y : d(x,y) > r\}\); so for any \(y \in U\) with \(d(x,y) = t\), it follows by an argument analogous to that of Proposition 2.2 that \(B_{t-r}(y) \subseteq U\). Hence \(U\) is open.

3. If \((X,d)\) is discrete, any subset \(U \subseteq X\) is open because \(B_{1/2}(u) = \{u\} \subseteq U\) by (1.10).
A particular case of Example 2.3.1 is provided by the union of two open intervals \((a, b) \cup (c, d)\) in the Euclidean line, where \(a < b < c < d\). It follows from Example 2.3.2 that \(\mathbb{R} \setminus [a, b] = (-\infty, a) \cup (b, +\infty)\) is also open.

On the other hand, many sets are not open in \(X\).

Examples 2.4.

1. The closed ball \(B_1(0)\) is not open in the Euclidean plane \(\mathbb{R}^2\). For consider \(u \in B_1(0)\) such that \(d(0, u) = 1\); then any \(B_\epsilon(u)\) contains points \(y\) for which \(d(x, y) = 1 + \epsilon/2\). Hence \(B_\epsilon(u) \not\subset B_1(0)\), as required. So Proposition 2.2 confirms that \(B_1(0)^\circ = B_1(0)\), by removing all \(u\) with \(|u| = 1\).

2. The subset \(\mathbb{Q}\) of the Euclidean line contains no open balls at all, and is therefore not open. For let \(q \in \mathbb{Q}\); then any open interval \((q - \epsilon, q + \epsilon)\) contains the irrationals \(q + \sqrt{2}/n\) for every integer \(n > \sqrt{2}/\epsilon\). So \(\mathbb{Q}^\circ = \emptyset\).

3. Similarly, the subset \(\mathbb{R}^x := \{(x, 0) : x \in \mathbb{R}\}\) of the Euclidean plane contains no open balls, because it contains no points \((x_1, x_2)\) with \(|x_2| > 0\). So \(\mathbb{R}_x^x = \emptyset\).

These examples confirm the importance of the metric for the openness of a set. By Examples 2.3.2 and 2.4.3, both \(\mathbb{Q} \subset \mathbb{R}\) and \(\mathbb{R}^x \subset \mathbb{R}^2\) are open with the discrete metric, but not with the Euclidean metric.

Theorem 2.5. Given any two subsets \(U, V \subseteq X\), the following hold:

1. \(U \subseteq V\) implies that \(U^\circ \subseteq V^\circ\)

2. \((U^\circ)^\circ = U^\circ\)

3. \(U^\circ\) is open in \(X\)

4. \(U^\circ\) is the largest subset of \(U\) that is open in \(X\).

Proof.

1. If \(u \in U^\circ\), then there exists \(B_\epsilon(u) \subseteq U \subseteq V\); so \(u \in V^\circ\).

2. By definition, \((U^\circ)^\circ \subseteq U^\circ\). On the other hand, if \(u \in U^\circ\), then there exists \(B_\epsilon(u) \subseteq U\); thus \(B_\epsilon(u)^\circ \subseteq U^\circ\) by 1, and \(B_\epsilon(u) \subseteq U^\circ\) by Proposition 2.2. Thus \(u \in (U^\circ)^\circ\), so \(U^\circ \subseteq (U^\circ)^\circ\) as required.

3. This follows immediately from 2.

4. Suppose that \(U^\circ \subseteq W \subseteq U\), where \(W\) is open; then \(W = W^\circ \subseteq U^\circ\) by 1. So \(W \subseteq U^\circ\), and \(U^\circ = W\) as required. \(\square\)
Open sets satisfy certain criteria that ensure they define a topology on X. Topology is a more advanced form of geometry than metric spaces, but the relevant properties are crucial to both theories.

Theorem 2.6. The sets X and \emptyset are open in X; so are an arbitrary union $U = \bigcup_{i \in I} U_i$ of open sets U_i, and a finite intersection $U' = U'_1 \cap \cdots \cap U'_m$ of open sets U'_j.

Proof. The openness of X is immediate. For \emptyset, consider the requirement that $u \in \emptyset$ implies $B_\epsilon(u) \subseteq \emptyset$; since its left- and right-hand sides are both false, the implication is true by virtue of the truth table.

For U, observe that any $u \in U$ must lie in some U_i; thus $B_\epsilon(u) \subseteq U_i \subseteq U$, and U is open.

For U', suppose that $u \in U'$. Then $u \in U'_j$ for each j, and there exists $\epsilon(j)$ such that $B_\epsilon(j)(u) \subseteq U'_j$ for $1 \leq j \leq m$. Hence $B_\epsilon(u) \subseteq U'_j$ for every j, so long as $\epsilon \leq \min(\epsilon(j) : 1 \leq j \leq m)$. Thus $B_\epsilon(u) \subseteq U'$, and U' is open.

Note that the openness of U generalises Examples 2.3.1. In particular, infinite unions of open intervals such as

$$U = \bigcup_{i=1}^\infty \left(1/(2i + 1), 1/2i\right) \subset \mathbb{R}$$

may be difficult to visualise, but nevertheless are open subsets of the Euclidean line. On the other hand, infinite intersections of open sets may not be open. For example, let V_j be the open interval $(-1/j, 1/j)$ in the Euclidean line \mathbb{R}, for every $j = 1, 2, \ldots$. Then $\bigcap_j V_j = \{0\}$, which is not open in \mathbb{R}.

Lecture 6

Given any metric space (X, d), it is also important to generalise the notion of a closed ball. Throughout this section, $U \subseteq X$ continues to denote an arbitrary subset.

Definition 2.7. A point $x \in X$ is a closure point of $U \subseteq X$ if $B_\epsilon(x) \cap U$ is non-empty for every $\epsilon > 0$; the closure of U is the superset $\overline{U} \supseteq U$ of all closure points. If $\overline{U} = U$, then U is closed in X.

So U is closed precisely when $B_\epsilon(x) \cap U$ non-empty for every $\epsilon > 0$ implies that $x \in U$.

A simple criterion for recognising closed sets is the following.

Proposition 2.8. A set V is closed in X iff its complement $U := X \setminus V$ is open.
Proof. First suppose that V is closed. Since $V = V$, no point of U can have $B_\epsilon(x) \cap V$ non-empty for every $\epsilon > 0$; in other words, $B_\delta(x) \cap V = \emptyset$ for some δ. Hence $B_\delta(x) \subset U$, and U is open.

Now suppose that U is open. Choose $u \in V$, and assume that $u \notin V$; then $u \in U$, so there exists $B_\epsilon(u) \subseteq U$. Hence $B_\epsilon(u) \cap V = \emptyset$, a contradiction. So $u \in V$, and $\overline{V} \subseteq V$. Hence V is closed.

Corollary 2.9. Every closed ball $B_r(x)$ is closed in X.

Proof. By Example 2.3.2, $X \setminus B_r(x)$ is open in X. So $B_r(x)$ is closed.

Note that Proposition 2.8 also states that U is open in X iff its complement $X \setminus U$ is closed.

There are therefore two ways to proceed with many properties and problems concerning closed sets. The first is to use the definitions directly; and the second is to take complements, and use the properties of open sets. Both approaches will be much in evidence below.

Examples 2.10.

1. Any intersection $B_1 \cap B_2$ of two closed balls is closed; for $B_\epsilon(x) \cap (B_1 \cap B_2)$ non-empty implies that $B_\epsilon(x) \cap B_1$ and $B_\epsilon(x) \cap B_2$ are non-empty, and hence that $x \in B_1$ and $x \in B_2$. Thus $x \in B_1 \cap B_2$, which is therefore closed.

2. The complement $V := X \setminus B_r(x)$ of an open ball is given by $\{y : d(x, y) \geq r\}$; so V is closed by Proposition 2.8.

3. If (X, d) is discrete, any subset $V \subseteq X$ is closed, because $X \setminus V$ is open by Example 2.3.3.

A particular case of Example 2.10.1 is provided by the intersection of two closed balls $\overline{B}_1(0, 0) \cap \overline{B}_1(1, 0)$ in the Euclidean plane. This is a segment-shaped region, with the point $(1/2, 0)$ in its interior. It follows from Example 2.10.2 that the set $\{(x_1, x_2) : x_1^2 + x_2^2 \geq 1\}$ is also closed in \mathbb{R}^2.

On the other hand, many sets are neither open nor closed in X. Many more are open but not closed; so their complements are closed but not open!

Definition 2.11. A partially open ball in X is a set $P_r(x) := B_r(x) \cup P$, where P is a proper subset of $\{p : d(x, p) = r\}$.

A partially open ball $P_1(0)$ in (\mathbb{R}^n, d_2) is an open disc, with some (but not all) unit vectors adjoined; $P_1(0)$ in (\mathbb{R}^2, d_1) is an open diamond, with some (but not all) vectors satisfying $x_1 \pm x_2 = \pm 1$ adjoined.

Examples 2.12.

1. The open ball $B_1(0)$ is not closed in the Euclidean plane \mathbb{R}^2, because every point x with $|x| = 1$ is a closure point.
2. Example 2.3.2 confirms that no point \(x \in \mathbb{R}^2 \) with \(|x| > 1 \) is a closure point of \(B_1(0) \), so \(\overline{B_1(0)} = \overline{B_1(0)} \). This explains the notation for closed balls. But beware (see Problem 20); \(\overline{B_r(x)} \neq B_r(x) \) in some metric spaces!

3. A partially open ball \(P_r(x) \subset \mathbb{R}^2 \) is neither open nor closed, with either metric \(d_1 \) or \(d_2 \); for the points \(p \in P \) are not in the interior of \(P_r(x) \), and the points \(p \notin P \) distant \(r \) from \(x \) are closure points of \(P_r(x) \).

Theorem 2.13. Given any two subsets \(U, V \subseteq X \), the following hold:

1. \(U \subseteq V \) implies that \(\overline{U} \subseteq \overline{V} \)
2. \(\overline{\overline{V}} = \overline{V} \)
3. \(\overline{V} \) is closed in \(X \)
4. \(\overline{V} \) is the smallest set containing \(V \) that is closed in \(X \).

Proof.

1. If \(B_\epsilon(x) \cap U \) is non-empty for every \(\epsilon > 0 \), so is \(B_\epsilon(x) \cap V \).

2. By definition, \(\overline{V} \subseteq \overline{V} \). Conversely, if \(x \in \overline{V} \), then \(B_{\epsilon/2}(x) \cap \overline{V} \) is non-empty for every \(\epsilon > 0 \). So there exists \(w \) for which \(d(x, w) < \epsilon/2 \) and \(w \in \overline{V} \), whence \(B_{\epsilon/2}(w) \cap V \) is non-empty; thus \(B_\epsilon(x) \cap V \) is also non-empty, by the triangle inequality. Hence \(x \in \overline{V} \), and \(\overline{\overline{V}} \subseteq \overline{V} \) as required.

3. This follows immediately from 2.

4. Suppose that \(V \subseteq W \subseteq \overline{V} \), where \(W \) is closed; then \(\overline{V} \subseteq \overline{W} = W \) by 1. So \(\overline{V} \subseteq W \), and \(W = \overline{V} \) as required. \(\square \)

Crucial properties of closed sets follow from Proposition 2.8 and Theorem 2.6.

Theorem 2.14. The sets \(X \) and \(\emptyset \) are closed in \(X \); so are an arbitrary intersection \(V = \bigcap_{i \in I} V_i \) of closed sets \(V_i \) and a finite union \(V' = V'_1 \cup \cdots \cup V' \) of closed sets \(V'_j \).

Proof. Since \(X \setminus \emptyset = X \) and \(X \setminus X = \emptyset \), both \(X \) and \(\emptyset \) are closed.

For \(V \), observe that \(X \setminus V = \bigcup_{i \in I} (X \setminus V_i) \) is an arbitrary union of open sets, and is therefore open. Similarly, \(X \setminus V' = (X \setminus V'_1) \cap \cdots \cap (X \setminus V'_m) \) is a finite intersection of open sets, and is also open. \(\square \)

Note that the closedness of \(V \) generalises Examples 2.10.1.
Lecture 7

For many applications it is useful to introduce the idea of a sequence into the theory of metric spaces, and to link the concept of limit to that of closure.

For any metric space $X = (X, d)$, a sequence in X is a function $s : \mathbb{N} \to X$. It is standard practise to write $s(n)$ as x_n, and display the sequence as $(x_n : n \geq 1)$.

Definition 2.15. A sequence (x_n) **converges** to the point $x \in X$ whenever

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } n \geq N \Rightarrow d(x, x_n) < \epsilon;$$

in this situation, x is known as the **limit** of (x_n).

Convergence of (x_n) to x may be written as $\lim_{n \to \infty} x_n = x$, or $x_n \to x$ as $n \to \infty$. Of course, Definition 2.15 requires that the sequence of real numbers $d(x, x_n)$ tends to 0 in the standard sense. In terms of open balls, $x_n \to x$ whenever\(^{16}\)

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } n \geq N \Rightarrow x_n \in B_\epsilon(x).$$

Examples 2.17.

1. In Euclidean m-space, $d_2(x_n, x) = |x_n - x|$; so Definition 2.15 coincides with the standard notion that $x_n \to x$ iff $|x_n - x| \to 0$.

2. In the discrete metric space (X, d), a ball $B_\epsilon(x)$ consists only of $\{x\}$ for any $\epsilon < 1$, by (1.10); so Definition 2.15 reduces to the condition that $x_n \to x$ iff $x_n = x$ for all $n \geq$ some N.

3. The same considerations apply to the vertices of a graph Γ with edge metric e; again, $v_n \to v$ iff v_n is eventually constant at v.

4. In the function space $C[a,b]$ of (1.20), $d_{sup}(f_n, f) = \sup_{x \in [a,b]} |f_n(x) - f(x)|$; Definition 2.15 means that $f_n \to f$ iff $f_n(x) \to f(x)$ uniformly on $[a,b]$.

5. Thus $x^n \not\to 0$ in $C[0,1]$, because $\sup_{x \in [0,1]} |x^n| = 1 \not\to 0$. On the other hand, $x^n \to 0$ in $L_1[0,1]$, because

$$d_1(x^n, 0) = \int_0^1 |t^n| \, dt = 1/(n+1) \to 0 \text{ as } n \to \infty.$$

Theorem 2.18. *In any a metric space (X, d), the limit of a convergent sequence is unique.*

Proof. Suppose that $x_n \to x$ and $x_n \to x'$, where $x \neq x'$; then $d := d(x, x') > 0$, and ϵ may be chosen as $d/2$. So $B_\epsilon(x)$ and $B_\epsilon(x')$ are disjoint, by the triangle inequality.

On the other hand, (2.16) implies that $x_n \in B_\epsilon(x)$ for $n \geq N$, and $x_n \in B_\epsilon(x')$ for $n \geq N'$. So $x_n \in B_\epsilon(x) \cap B_\epsilon(x')$ for $n \geq \max(N, N')$, a contradiction.

Hence $x = x'$. \[\square\]
The connection of limits with closure arises as follows.

Theorem 2.19. Suppose that $Y \subseteq X$ and $y \in X$; then y lies in \overline{Y} iff there exists a sequence (y_n) in Y such that $y_n \to y$ as $n \to \infty$.

Proof. Suppose that $y_n \to y$ as $n \to \infty$. Then $y_n \in B_\epsilon(y)$ for all sufficiently large n, and any $\epsilon > 0$. But $y_n \in Y$, so $B_\epsilon(y) \cap Y$ is non-empty and y lies in \overline{Y}.

Conversely, let y lie in \overline{Y}. Then $B_{1/n}(y) \cap Y$ is non-empty for any integer $n \geq 1$, and contains at least one point y_n. Moreover, any $\epsilon > 0$ admits an n for which $1/n < \epsilon$; so $y_n \in B_\epsilon(y)$. Hence $y_n \to y$ as $n \to \infty$.

Examples 2.20.

1. Let Y be the subset $\{1/n : n = 1, 2, \ldots\}$ of the Euclidean line; so $0 \notin Y$. But $(y_n = 1/n)$ lies in Y, and has limit 0; so $0 \notin \overline{Y}$. Moreover, any convergent sequence in Y must tend to some $1/m$, or 0. So $\overline{Y} = Y \cup \{0\}$.

2. Let $Y \subseteq V$ be any subset of the vertices of a graph Γ, with edge metric e, and let (v_n) be a sequence in Y. Since $v_n \to v$ only if v_n is eventually constant, any such v must also lie in Y. Thus Y is closed.

A more substantial example involves the function spaces of (1.20).

Example 2.21. Let Y be the subset $\mathcal{P}[0,1] \subseteq C[0,1]$, and consider the sequence

$$f_n(x) = 1 + x/2 + x^2/4 + \cdots + x^n/2^n$$

of polynomials f_n in Y. Let $f(x) = (1 - x/2)^{-1}$ in $C[0,1]$; then the Binomial Theorem implies that $f(x) - f_n(x) = \sum_{k \geq n+1} x^k/2^k \leq 1/2^n$ for $x \in [0,1]$. So

$$d_{\text{sup}}(f_n, f) = \sup_{x \in [0,1]} |f_n(x) - f(x)| = 1/2^n \to 0 \text{ as } n \to \infty,$$

and $f_n \to f$ in $C[0,1]$. But f is not a polynomial, so $\mathcal{P}[0,1]$ is not closed.

As in real analysis, sequences present themselves in several alternative forms.

Definition 2.22. In any metric space (X, d), a [Cauchy sequence] (x_n) satisfies

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } m, n \geq N \Rightarrow d(x_m, x_n) < \epsilon.$$

Proposition 2.23. If $x_n \to x$ in (X, d), then (x_n) is a Cauchy sequence.

Proof. Given any $\epsilon > 0$, suppose that $d(x_n, x) < \epsilon/2$ for all $n \geq N$. Then

$$d(x_m, x_n) \leq d(x_m, x) + d(x, x_n) < \epsilon/2 + \epsilon/2 = \epsilon$$

for $m, n \geq N$, by the triangle inequality. So (x_n) is Cauchy.
The converse is false. For example, the sequence 1, 1.4, 1.41, 1.414, ... lies in the subset \(\mathbb{Q} \) of the Euclidean line, but converges to \(\sqrt{2} \in \mathbb{R} \). It is therefore Cauchy in \(\mathbb{Q} \), but not convergent in \(\mathbb{Q} \). This example also proves that \(\mathbb{Q} \) is not closed in \(\mathbb{R} \), by Theorem 2.19; on the other hand \(\overline{\mathbb{Q}} = \mathbb{R} \), essentially because every real number has an infinite decimal expansion.

Definition 2.24. A subset \(Y \) is dense in \((X,d)\) whenever \(\overline{Y} = X \).

Thus \(\mathbb{Q} \) is dense in \(\mathbb{R} \).

Lecture 8

Definition 2.25. A subset \(A \) of a metric space \((X,d)\) is bounded whenever there exists \(x_0 \in X \) and \(M \in \mathbb{R} \) such that \(d(x,x_0) \leq M \) for every \(x \in A \). A function \(f: S \to X \) is bounded whenever its image \(f(S) \subset X \) is a bounded, for any set \(S \).

So \(A \) is bounded whenever \(A \subseteq \overline{B}_M(x_0) \).

If \(A \) satisfies Definition 2.25, it is necessary to check that the same criterion holds for any other point \(x_1 \in X \). This is true because

\[
d(x,x_1) \leq d(x,x_0) + d(x_0,x_1) \leq M + d(x_0,x_1) = M'
\]

by the triangle inequality. Any subset of a bounded subset is also automatically bounded.

If \(x \) and \(y \) lie in a bounded set \(A \), then \(d(x,y) \leq d(x,x_0) + d(x_0,y) \leq 2M \), so \(d(x,y) \) is bounded in \(\mathbb{R} \). The following definition is therefore meaningful.

Definition 2.26. The diameter \(\text{diam}(A) \) of a bounded non-empty subset \(A \subseteq X \) is the real number

\[
\sup\{d(x,y) : x,y \in A\}.
\]

It is sometimes convenient to interpret the diameter of the empty set as 0.

Examples 2.27.

1. The open ball \(B_r(0) \) in Euclidean \(n \)-space is bounded, because \(d(x,0) < r \) for any \(x \in B_r(0) \); so its diameter is \(\leq 2r \). On the other hand, points such as \(x = (r-\epsilon,0,\ldots,0) \) and \(-x = (\epsilon-r,0,\ldots,0) \) satisfy \(d(x,-x) = 2(r-\epsilon) \) for any \(\epsilon > 0 \); so its diameter is \(\geq 2(r-\epsilon) \). Hence \(\text{diam}(B_r(0)) = 2r \). It is even easier to deduce that \(\text{diam}(\overline{B}_r(0)) = 2r \).

2. Let \(e: \mathbb{R} \to \mathbb{R}^2 \) denote the function \(e(x) = (r \cos x,r \sin x) \) into the Euclidean plane; its image \(e(\mathbb{R}) \) is a circle of radius \(r \), which is a subset of \(\overline{B}_r(0) \), and therefore bounded. So \(e \) is a bounded function.
Calculations such as those of Example 2.27.1 suggest the need to codify the properties of sets such as the Euclidean \((n-1)\)-sphere \(\{x : |x| = r \}\) of radius \(r\), which is the difference \(B_r(0) \setminus B_r(0)\) between the closed and open balls. So let \(A \subseteq X\) be any subset of \((X, d)\).

Definition 2.28. A **boundary point** \(x \in X\) of \(A\) is one for which every open ball \(B_\epsilon(x)\) meets both \(A\) and \(X \setminus A\); the **boundary** \(\partial A\) of \(A\) is the set of all such boundary points.

Proposition 2.29. The boundary of any subset \(A\) is the set \(\overline{A} \setminus A^\circ\).

Proof. Suppose that \(x \in \partial A\). Then every \(B_\epsilon(x)\) meets \(A\), so \(x \in \overline{A}\); but \(B_\epsilon(x)\) meets \(X \setminus A\), so \(x \notin A^\circ\). Hence \(\partial A \subseteq \overline{A} \setminus A^\circ\).

Conversely, suppose that \(x \in \overline{A} \setminus A^\circ\). Then \(x \in \overline{A}\), so that every \(B_\epsilon(x)\) meets \(A\); and \(x \notin A^\circ\), so \(B_\epsilon(x)\) meets \(X \setminus A\). Thus \(B_\epsilon(x)\) meets both \(A\) and \(X \setminus A\), and \(x \in \partial A\). Hence \(\overline{A} \setminus A^\circ \subseteq \partial A\), as required. \(\Box\)

If \(A\) fails to be closed, then it has closure points not in \(A\), so \(\partial A \not\subseteq A\). If \(A^\circ\) is empty, then \(\partial A = \overline{A}\).

Examples 2.30.

1. The closed ball \(\overline{B}_r(0)\) in Euclidean \(n\)-space is closed by Corollary 2.9, and its interior is the open ball \(B_r(0)\); thus \(\partial \overline{B}_r(0)\) is the sphere \(\{x : |x| = r \}\).

The open ball \(B_r(0)\) is open by Proposition 2.2, but its closure is the closed ball \(\overline{B}_r(0)\); thus \(\partial B_r(0)\) is also the sphere \(\{x : |x| = r \}\)!

2. The subset \(Q\) of the Euclidean line is dense, but \(Q^\circ\) is empty by Examples 2.4.2. Thus \(\partial Q = \mathbb{R}\).

3. The subset \(A := \mathbb{R}^n \setminus \{0\}\) of Euclidean \(n\)-space is open, because \(\{0\}\) is closed. Moreover, \(\overline{A} = \mathbb{R}^n\), because the sequence \((1/n : n \geq 1)\) in \(A\) tends to 0 in \(\mathbb{R}^n\). Thus \(\partial A = \mathbb{R}^n \setminus A = \{0\}\).

A particular case of Example 2.30.1 is provided by the closed interval \([a, b]\) and the open interval \((a, b)\) in the Euclidean line, for any \(a < b\). Both have boundary \(\{a, b\}\).

Theorem 2.31. Any subset \(A\) of \((X, d)\) satisfies

1. \(A \setminus \partial A = \overline{A} \setminus \partial A = A^\circ\)
2. \(\partial A = \partial(X \setminus A)\)
3. \(\partial A\) is closed in \(X\)

Proof.
1. It suffices to show that
\[A \setminus \partial A \subseteq \overline{A} \setminus \partial A \subseteq A^\circ \subseteq A \setminus \partial A, \]
as follows. If \(x \in A \setminus \partial A \), then \(x \in \overline{A} \setminus \partial A \) because \(A \subseteq \overline{A} \). If \(x \in \overline{A} \setminus \partial A \), then every \(B_\epsilon(x) \) meets \(A \), but not \(X \setminus A \); thus \(B_\epsilon(x) \subseteq A \), and \(x \in A^\circ \). If \(x \in A^\circ \), then \(B_\epsilon(x) \) meets \(A \), but not \(X \setminus A \) for small \(\epsilon \); thus \(x \in A \setminus \partial A \).

2. This is an immediate consequence of Definition 2.28, since \(X \setminus (X \setminus A) = A \).

3. If \(x \in \overline{\partial A} \), then every \(B_\epsilon(x) \) meets \(\partial A \). So there exists \(y \in B_\epsilon(x) \) such that \(B_\delta(y) \) meets both \(A \) and \(X \setminus A \), and \(B_\delta(y) \subseteq B_\epsilon(x) \). Thus \(B_\epsilon(x) \) also meets them both, whence \(x \in \partial A \). Thus \(\overline{\partial A} \subseteq \partial A \), as required. \(\square \)