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Chapter 1

Introduction

SmallOverlap is aGAP package for computing with monoids and semigroups given by finite presen-
tations satisfying small overlap conditions of the kind introduced by Remmers [Rem71]. It includes
routines for testing whether presentations satisfy small overlap conditions, and an implementation of
a new, highly efficient algorithm to solve the word problem for monoid and semigroup presentations
satisfying the conditionC(4) [Kam07].

The purposes of the package are twofold. First, it can be transparently employed by users wishing
to make use of faster computations in small overlap monoids and semigroups. And secondly, it will
be of use to researchers studying small overlap monoids and semigroups for their own sake.

The package is still at an early development stage, and may well contain bugs. If you find one, or
have any comments on the package, the author will be very pleased to hear from you.

This manual comprises five chapters. This introduction contains technical information on in-
stalling and loading the package. Chapter2 contains a very brief introduction to the history and
theory of small overlap conditions. Chapter3 is a short example session to illustrate the most im-
portant features of the package. Chapter4 documents all the functionality of the package in detail.
Finally, Chapter5 discusses some performance issues.

1.1 System Requirements and Dependencies

SmallOverlap is written in pure GAP with no use of external libraries, and so should run happily on
any platform supported by GAP. The algorithms implemented are highly efficient, so unless you are
working with enormous presentations, you should need no more memory or processor power than is
usually required byGAP. The package has been developed and tested withGAP 4.4.10, but is likely
to work with anyGAP 4 release. The online help requiresGAPDoc 1.1 or later.

1.2 Obtaining and Installing SmallOverlap

To installSmallOverlap, download the filesmalloverlap.tarfrom Mark’s Homepageand unpack it into
thepkg directory of yourGAP hierarchy.
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1.3 Loading SmallOverlap

This section describes how to load theSmallOverlap package, and how to makeGAP use it implicitly
and transparently for computations. First load the package in the usual way:

Example
gap> LoadPackage("smalloverlap");
Loading package SmallOverlap (version 0.1)
Mark Kambites, School of Mathematics, University of Manchester
This is an experimental development version and may contain bugs.
All usage is at your own risk.
Please send comments and bug reports to Mark.Kambites@manchester.ac.uk

SmallOverlap routines are now installed for explicit use only; to
enable implicit use call PreferSmallOverlapEqualityTest()

true

Now if you want to make GAP use the new small overlap routines whenever it can, just call the
functionPreferSmallOverlapEqualityTest:

Example
gap> PreferSmallOverlapEqualityTest();
SmallOverlap routines will now be used (where applicable) for
testing equality in finitely presented semigroups and monoids.

You can now use GAP entirely as normal, forgetting that the package is installed. However, compu-
tations with finitely presented semigroups and monoids will now use the small overlap equality tester
where applicable, which means that many computations will run faster, or succeed where they would
otherwise have failed or not terminated. (In the event that you are performing computations with very
large numbers of different finitely presented monoids or semigroups which donot satisfyC(4), you
may experience a slight slowdown caused by the process of checking theC(4) condition for each
monoid - see5.2 for a full discussion.) If you just wish to enjoy the fast computation abilities of the
small overlap routines, you need read no further!



Chapter 2

Theory of Small Overlap Presentations

The aim of this chapter is very briefly to give some historical background and some basic definitions
needed to make the rest of this manual intelligible to the non-specialist. A detailed introduction to
the theory of small overlap conditions is well beyond the scope of this manual, but we provide some
references which can be followed up by the reader seeking a more detailed understanding.

2.1 Historical Background

Small overlap conditions are a natural semigroup- and monoid-theoretic analogue of the small cancel-
lation conditions studied in combinatorial group theory. They were introduced and extensively studied
in the thesis of Remmers [Rem71]; he developed a geometric theory of small overlap semigroups and
monoids (see also [Rem80]) based on a semigroup-theoretic analogue of the van Kampen diagrams
employed by group theorists [LS77].

Remmers showed that if a presentation satisfies the conditionC(3) then the ratio of the lengths of
equivalent words is bounded by a constant dependent only on the presentation. In particular, equiv-
alence classes for such presentations are finite, which immediately gives a theoretical decision algo-
rithm for the word problem by exhaustive enumeration. An accessible exposition of some of Rem-
mers’ results can be found in the book of Higgins [Hig92].

For practical purposes, exhaustive enumeration of equivalence classes is not a feasible approach
to the word problem, since these classes can be exponential in the size of their elements, and it is
not clear from Remmers’ work whether there is a more tractable solution. However, recent research
of Kambites [Kam07] has yielded a highly practical (linear time) algorithm for the word problem of
any presentation satisfying the slightly stronger conditionC(4). An implementation of this algorithm
forms the core of theSmallOverlap package.

2.2 Basic Definitions

We assume the reader to be familiar with finitely presented monoids and semigroups. Suppose we
have a fixed monoid or semigroup presentation. Arelation wordis a word over the generators which
forms one side of a relation in the presentation. Apieceof the presentation is a word which occurs as
a factor of two different relation words, or as a factor of one relation word in two different places. (We
make the convention that the empty word is always a piece; this is necessary to facilitate a uniform
treatment of the free monoid as a small overlap monoid.)
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Let n be a positive integer. The presentation is said tosatisfy C(n) if no relation word can be
written as a product ofstrictly fewer than npieces. Thesmall overlap classof the presentation is
the smallest positive integern such that the presentation satisfiesC(n), or infinity if the presentation
satisfiesC(n) for all n, or 0 if the presentation does not satisfyC(n) for anyn.

Now letRbe a relation word. If the presentation satisfies the conditionC(1) then there is a unique
relation wordT such thatR= T or T = R is a relation in the presentation.T is called thecomplement
relation wordof R.

Themaximal piece prefixof the relation wordR is the (possibly empty) longest prefix ofR which
is a piece. Similarly, themaximal piece suffixof R is the longest suffix ofR which is a piece. If
the presentation satisfiesC(3) then the maximal piece prefix and maximal piece suffix clearly cannot
meet, sor admits a factorisation

r = XYZ

whereX is the maximal piece prefix,Z is the maximal piece suffix, andY is a non-empty word, called
the middle wordof R. If moreover the presentation satisfies the stronger conditionC(4), then the
middle wordY is not a piece.



Chapter 3

Example Session

This chapter contains a short example session to illustrate some basic features of theSmallOverlap
package. We begin, naturally enough, by loading the package:

Example
gap> LoadPackage("smalloverlap");
Loading package SmallOverlap (version 0.1)
Mark Kambites, School of Mathematics, University of Manchester
This is an experimental development version and may contain bugs.
All usage is at your own risk.
Please send comments and bug reports to Mark.Kambites@manchester.ac.uk

SmallOverlap routines are now installed for explicit use only; to
enable implicit use call PreferSmallOverlapEqualityTest()

true

Next we define a finitely presented monoid to play with, and give some names to its generators. (See
[Gro, Chapter 51] for information on defining finitely presented monoids and semigroups inGAP.)

Example
gap> f := FreeMonoid(["a", "b", "c"]);
<free monoid on the generators [ a, b, c ]>
gap> gens := GeneratorsOfMonoid(f);; A := gens[1];; B := gens[2];; C := gens[3];;
gap> s := f / [[Aˆ2 * B * C, A * C * B * A]];
<fp monoid on the generators [ a, b, c ]>
gap> a:=GeneratorsOfMonoid(s)[1];;
gap> b:=GeneratorsOfMonoid(s)[2];;
gap> c:=GeneratorsOfMonoid(s)[3];;

Now we make our first use of theSmallOverlap package, to compute the small overlap class of our
newly defined monoid.

Example
gap> SmallOverlapClass(s);
4

So the presentation we gave fors satisfies the small overlap conditionC(4). Note that
SmallOverlapClass (4.1.2) is implemented as an attribute of finitely presented monoids and semi-
groups, which means that when once we have computed it,GAP knows it for the rest of the session:
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Example
gap> s;
<C(4) small overlap fp monoid on the generators [ a, b, c ]>

For this presentation,GAP’s standard Knuth-Bendix completion algorithm does not terminate, so it
does not know how to solve the word problem:

Example
gap> a = b;

At this point,GAP will enter an infinite loop, and nothing further will happen! (If you are following
along with the example inGAP, you will need to interrupt this computation - on most platforms hold
down Ctrl and press C to break into the computation, and then type “quit;” at the break prompt to
return to the normal GAP prompt.)

Now we try the same test, making explicit use of theSmallOverlap routines:
Example

gap> C4WordProblem(a, b);
false

To enable implicit use of theSmallOverlap routines for equality testing, we use the function
PreferSmallOverlapEqualityTest (4.3.1):

Example
gap> PreferSmallOverlapEqualityTest(true);
SmallOverlap routines will now be used (where applicable) for
testing equality in finitely presented semigroups and monoids.
And you’ll know about it.

We can now just use the equality test operator (=) andGAP will automatically use the small overlap
routines if applicable...

Example

gap> a = b;
(using SmallOverlap equality test)
false
gap> a*a*b*c*a*b*c = a*a*b*c*c*b*a;
(using SmallOverlap equality test)
true

The output “(using SmallOverlap equality test)” is because we passed the argumenttrue
to PreferSmallOverlapEqualityTest (4.3.1). If we had instead used the argumentfalse (or no
argument), the selection of small overlap routines would have been entirely transparent.

Note that the selection of the small overlap equality tester isnotdependent on the fact that we had
previously calledSmallOverlapClass (4.1.2) to check the small overlap class of the presentation.
Had we not done so, it would have been checked automatically.

For semigroups and monoids not satisfying C(4), the equality tester reverts to whatever GAP
would have used had the package not been installed (usually Knuth-Bendix completion, although it
could be something different if you have other packages installed or the semigroup or monoid has
other special properties).
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Example
gap> t := f / [[Aˆ2, B]];
<fp monoid on the generators [ a, b, c ]>
gap> GeneratorsOfMonoid(t)[1] = GeneratorsOfMonoid(t)[2];
(using GAP’s default (Knuth-Bendix?) equality test)
false

In this case GAP reverts to the usual Knuth-Bendix method (which, fortunately, works this time!).
This is because....

Example
gap> IsC4(t);
false
gap> SmallOverlapClass(t);
2

....the presentation we have given fort does not have sufficiently good small overlap properties for
the new routines to be applicable.



Chapter 4

Reference

This chapter documents in detail the new attributes and functions provided by theSmallOverlap; ex-
amples of the use of the most important functions can be found in the example session in Chapter
3.

4.1 Attributes for Monoids and Semigroups

This section documents new attributes and filters defined by the package for finitely presented monoids
and semigroups.

4.1.1 IsFpMonoidOrSemigroup

♦ IsFpMonoidOrSemigroup(S) (filter)

The filter IsFpMonoidOrSemigroup is true if the argumentS is either a finitely presented
monoid or a finitely presented semigroup, andfalse otherwise. It is the disjunction of the standard
GAP filtersIsFpMonoid andIsFpSemigroup (see [Gro, Chapter 51]).

4.1.2 SmallOverlapClass

♦ SmallOverlapClass(S) (attribute)

TheSmallOverlapClass of a finitely presented monoid or semigroupS, is the greatest positive
integern such that the presentation definingS satisfies the small overlap conditionC(n). It returns
infinity if the presentation satisfiesC(n) for all n, and 0 if the presentation does not satisfyC(n) for
anyn.

4.1.3 IsC4, IsC3, IsC2, IsC1

♦ IsC4(S) (filter)

♦ IsC3(S) (filter)

♦ IsC2(S) (filter)

♦ IsC1(S) (filter)
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The filtersIsC4, IsC3, IsC2, IsC1 indicate whether the defining presentation for the finitely
presented monoid or semigroupS satisfies the small overlap conditionsC(4), C(3), C(2) andC(1)
respectively. (They are currently implemented using the attributeSmallOverlapClass (4.1.2); they
could in principle be made more efficient by using dedicated code, but for ”everyday”-sized presenta-
tionsSmallOverlapClass (4.1.2) is so fast that it makes no difference.)

4.1.4 RelationWords

♦ RelationWords(S) (attribute)

The attributeRelationWords of the finitely presented semigroup or monoidS is a list of the
relation words in the defining presentation in their letter representations (see [Gro, Section 35.6]).
Relation words paired in the presentation occur as adjacent elements of the list; given the in-
dex of a relation word in the list, the index of complement relation word can be retrieved with
ComplementRelationWord (4.3.4).

4.1.5 RelationWordLengths

♦ RelationWordLengths(S) (attribute)

The attributeRelationWordLengths of the finitely presented semigroup or monoidS is a list
of the lengths of the relation words in the defining presentation, in an order corresponding to
RelationWords (4.1.4).

4.1.6 MaxPiecePrefixLengths, MiddleWordLengths, MaxPieceSuffixLengths

♦ MaxPiecePrefixLengths(S) (attribute)

♦ MiddleWordLengths(S) (attribute)

♦ MaxPieceSuffixLengths(S) (attribute)

These attributes of a finitely presented monoid or semigroupS are lists containing respectively
the length of the longest piece prefix, length of the middle word, and length of the longest piece suffix
of each relation word, in an order corresponding toRelationWords (4.1.4).

4.1.7 MaxPieceSuffixLengthBound

♦ MaxPieceSuffixLengthBound(S) (attribute)

This is the length of the longest maximal piece suffix of any relation word in the defining presenta-
tion for the finitely presented monoid or semigroupS. It is useful for estimating buffer sizes required
for certain computations.

4.2 Attributes for Elements of Monoids and Semigroups

This section documents new attributes and filters defined by the package for elements of monoids and
semigroups.
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4.2.1 IsElementOfFpMonoidOrSemigroup

♦ IsElementOfFpMonoidOrSemigroup(u) (filter)

The filter IsElementOfFpMonoidOrSemigroup is true if the argumentu is an element of a
finitely presented monoid or semigroup andfalse otherwise. It is the disjunction of the standard
GAP filtersIsElementOfFpMonoid andIsElementOfFpSemigroup (see [Gro, Chapter 51]).

4.2.2 IsElementOfC4, IsElementOfC3, IsElementOfC2, IsElementOfC1

♦ IsElementOfC4(u) (filter)

♦ IsElementOfC3(u) (filter)

♦ IsElementOfC2(u) (filter)

♦ IsElementOfC1(u) (filter)

The filtersIsElementOfC4, IsElementOfC3, IsElementOfC2, IsElementOfC1 indicate whether
the defining presentation for the containing monoid or semigroup ofu satisfies the small overlap
conditionsC(4), C(3), C(2) andC(1) respectively.

4.3 Functions

This section documents functions defined by the package.

4.3.1 PreferSmallOverlapEqualityTest

♦ PreferSmallOverlapEqualityTest([verbose] ) (function)

A call to the function toPreferSmallOverlapEqualityTest installs new methods for the equal-
ity test operator for elements of finitely presented monoids and semigroups respectively, which check
if the defining presentation satisfiesC(4) and applyC4WordProblemReckless (4.3.3) if applicable.
This is not installed by default since checking theC(4) condition imposes a small overhead on equality
tests in non-C(4) semigroups (see5.2).

The optional argumentverbose is a boolean value indicating whether the equality tester should
write to the standard output each time it performs an equality test, to tell the user which equality
test routine is being used; this can be useful in interactive mode but is clearly undesirable when the
equality tester is being employed in a program. The default behaviour is to produce no such output
(equivalent to the argumentfalse).

4.3.2 C4WordProblem

♦ C4WordProblem(u, v ) (function)

C4WordProblem decides very efficiently whether the argumentsu andv represent the same el-
ement of a finitely presented semigroup or monoid with defining presentation satisfying the small
overlap conditionC(4). It returnstrue if they do represent the same element,false if they do not,
andfail if u andv are not elements of the same finitely presented semigroup or monoid, or if the
defining presentation does not satisfyC(4).



SmallOverlap 14

4.3.3 C4WordProblemReckless

♦ C4WordProblemReckless(S, u, v ) (function)

C4WordProblemReckless tests whether the argumentsu andv are equal as elements of theC(4)
finitely presented monoid or semigroupS, returningtrue if they are andfalse if they are not. Unlike
C4WordProblem (4.3.2), no checks are performed on the arguments and if they do not have the correct
properties the behaviour is undefined - it may crash, not terminate, return the wrong answer, cause
your computer to explode or occasionally even return the right answer. This function is available
because it has slightly lower constant function call overhead thatC4WordProblem (4.3.2), which may
be significant when performing very large numbers of equality tests in the same semigroup or monoid.
For all other purposes, and if in any doubt, useC4WordProblem (4.3.2) instead.

4.3.4 ComplementRelationWord

♦ ComplementRelationWord(n) (function)

ComplementRelationWord takes as its argument an integern, and simply returnsn− 1 if n
is even, andn+ 1 if n is odd. Hence, ifn is an index into the list of relation words returned by
RelationWords (4.1.4), then the valued returned is the index in the list corresponding to the comple-
ment relation word.



Chapter 5

Performance Issues

This chapter briefly discusses some performance issues with the use of theSmallOverlap package.

5.1 Time and Space Complexity

Most of the routines implemented require time and space which is quadratic in the presentation
lengths, and linear in the element lengths. For a detailed complexity analysis of the algorithms see
[Kam07].

5.2 Performance Penalty for non-C(4) Monoids and Semigroups.

We have already remarked that the small overlap equality test method is not automatically installed,
since testing whether small overlap methods are applicable inevitably imposes a slight performance
overhead when computing with monoids in which they turn outnot to be applicable. More precisely,
when the equality test methodis installed:

• Testing theC(4) condition is carried out once per presentation. This takes time quadratic (with
very small coefficients) in the presentation length, so is only likely to be noticeable if working
with very large presentations, or with extremely large numbers of presentations.

• Checking each element to see if the containing fp monoid or semigroup has theC(4) property is
carried out once per element. This should be done in constant time (assumingGAP is reasonably
efficient in its internal implementation of function calls and attribute tests) but this may still be
appreciable if you are carrying out vast numbers of equality tests in the same monoid, and that
monoid does not satisfyC(4).

In addition, one could almost certainly construct examples ofC(4) monoids where the standard
GAP equality test algorithm (reduction to normal form using a confluent rewriting system created by
Knuth-Bendix completion) runs even faster than the small overlap algorithm. In practice the latter
is so fast that in such a case it is unlikely to matter much which algorithm is used but, once again,
performing very large numbers of equality tests in such a monoid could in principle be slower with
the small overlap routines.

For most purposes these penalties are negliglible, and since the vast majority of monoidsdo sat-
isfy C(4), likely to be vastly outweighed by the time saved by using small overlap methods where
applicable. Hence, unless you are performing very large numbers of equality tests, and moreover have
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definite reason to believe that a large proportion of these will be in monoids not satisfyingC(4), we
strongly recommend that you callPreferSmallOverlapEqualityTest.
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