An Inverse Monoid Approach to Thompson’s Group V and Generalisations

John Fountain

19 May 2011
NBSAN St Andrews
Properties

1. V contains every finite group
2. V is simple
3. V is finitely presented
4. V has type FP_∞
5. V has solvable word problem
6. V has solvable conjugacy problem
7. V has a subgroup isomorphic to $F_2 \times F_2$
8. The generalised word problem for V is undecidable
Right ideals of A^*

- $A = \{a_1, \ldots, a_k\}$; $u, v \in A^*$. u is a **prefix** of v if $v \in uA^*$.

- **Prefix code** P over A: $P \subseteq A^*$ and $uA^* \cap vA^* = \emptyset \ \forall u, v \in P$.

- P is **maximal** if for a prefix code Q over A, $P \subseteq Q \Rightarrow P = Q$.

- If R a right ideal of A^*, then

 (i) $R = PA^*$ for a uniquely determined prefix code P;

 (ii) P is the unique minimal set of generators for R.

- R is **essential** if $R \cap I \neq \emptyset$ for every right ideal I of A^*.

- $R = PA^*$ is essential if and only if P is a maximal prefix code.
Thompson-Higman Groups $V_{k,1}$

- $R^e_f(A^*) := \text{set of all } A^*-\text{isomorphisms between finitely generated essential right ideals of } A^*$.

- It is an inverse submonoid of \mathcal{I}_{A^*}.

- It is an F-inverse monoid, i.e., every σ-class contains a maximum element.

- $V_{k,1} := R^e_f(A^*)/\sigma$.

Note An A^*-isomorphism $\varphi : P_1 A^* \to P_2 A^* $ (P_1, P_2 prefix codes) restricts to a bijection from P_1 to P_2. **
Generalisation I

C is a **right LCM monoid** if C is left cancellative and for $a, b \in C$, $aC \cap bC = \emptyset$ or is principal.

Artin monoids (in particular, free monoids), Garside monoids.

A projective right ideal of C is a disjoint union of principal right ideals. If

$$P = a_1C \sqcup \cdots \sqcup a_tC$$

is a projective right ideal, say $\{a_1, \ldots, a_t\}$ is a **basis** for P.

Assumption C has finitely generated essential projective right ideals. Holds if C is a finitely generated monoid.

$R_{fp}^e(C)$:= set of all C-isomorphisms between finitely generated essential projective right ideals of C. It is an inverse submonoid of \mathcal{I}_C.

What about $R_{fp}^e(C)/\sigma$?
Generalisation II

C is still a right LCM monoid.

- If C is right Ore and cancellative, then $R_{fp}^e(C)/\sigma$ is the group of right fractions of C.

- If C is a left Rees monoid with finitely generated free part, then $C \cong A^* \rtimes G$ (see next slide) where $A = \{a_1, \ldots, a_k\}$ and G is an appropriate group.

 \[R_{fp}^e(C)/\sigma \cong V_k(G) \] (introduced by Nekrashevych).

- If $C = A^* \times \cdots \times A^*$ (n factors), then $R_{fp}^e(C)/\sigma \cong nV_{k,1}$ (introduced by Brin).

- Brown-Stein groups???
Left Rees Monoids

A left cancellative monoid C is a left Rees monoid if all its right ideals are projective, and each principal right ideal is contained in only finitely many principal right ideals.

G, C monoids. Actions: G on C: $(g, c) \mapsto g \cdot c$; C on G: $(g, c) \mapsto g|_c$.

On $C \times G$ define

$$(c, g)(d, h) = (c(g \cdot d), g|_d h).$$

With appropriate conditions on the actions, get a monoid $C \bowtie G$, the Zappa-Szép product of C and G.

Theorem (Lawson).

A monoid M is a left Rees monoid if and only if $M \cong A^* \bowtie G$ for some set A and group G.

In this case, the action of G on A^* is a self-similar action, i.e.,

$\forall g \in G, a \in A, \exists$ unique $b \in A, h \in G$ such that

$g \cdot (aw) = b(h \cdot w)$ for all $w \in A^*$. ($b = g \cdot a$ and $h = g|_a.$)
Alternative view of $R^e_{fp}(C)$: Inverse Hulls

C left cancellative. For $a \in C$, the mapping λ_a defined by

$$\lambda_a(c) = ac.$$

is one-one with domain C. $IH(C) = \text{Inv}\langle \lambda_a : a \in C \rangle$ is the inverse hull of C.

$$IH^0(C) = \begin{cases} IH(C) & \text{if } 0 \in IH(C) \\ IH(C) \cup \{0\} & \text{otherwise.} \end{cases}$$

Theorem (McAlister; also Nivat/Perrot)

The following are equivalent:

1. $IH^0(C)$ is 0-bsimple;
2. every non-zero element of $IH^0(C)$ can be written as $\lambda_a \lambda_b^{-1}$ for some $a, b \in C$;
3. the domain of each non-zero element of $IH^0(C)$ is a principal right ideal;
4. C is a right LCM monoid.
Alternative view of $R_{fp}^e(C)$: Orthogonal Completions

S inverse semigroup with zero. $a, b \in S$ are orthogonal ($a \perp b$) if

$$a^{-1}b = 0 = ab^{-1}.$$

Clearly, $a \perp b$ iff $aa^{-1} \perp bb^{-1}$ and $a^{-1}a \perp b^{-1}b$.

$A \subseteq S$ is orthogonal if $a \perp b$ for all distinct $a, b \in A$.

S is orthogonally complete if it satisfies:

1. \{a_1, \ldots, a_n\} orthogonal implies $a_1 \lor \cdots \lor a_n$ exists (natural po), and
2. multiplication distributes over joins of finite orthogonal sets.

Examples

1. Symmetric inverse monoids.
2. $IH^0(C)$ where C is a right Ore and right LCM monoid.
S inverse semigroup with zero.

\[D(S) = \{ A \subseteq S : 0 \in A, |A| < \infty, A \text{ is orthogonal} \}. \]

Theorem (Lawson)

1. $D(S)$ is an inverse subsemigroup of $P(S)$; it is a monoid if S is a monoid.
2. $\iota : S \rightarrow D(S)$ given by $a \mapsto \{0, a\}$ embeds S in $D(S)$
3. $D(S)$ is orthogonally complete.
4. If $\theta : S \rightarrow T$ is a homomorphism to an orthogonally complete inverse semigroup T, then there is a unique join preserving homomorphism $\varphi : D(S) \rightarrow T$ such that $\varphi \iota = \theta$.

Say $D(S)$ is the **orthogonal completion** of S.
C is a right LCM monoid. $R_f(C)$ (resp. $R_{fp}(C)$) is the set of C-isomorphisms between finitely generated (resp. finitely generated projective) right ideals of C.

$R_{fp}(C) \subseteq R_f(C)$ are inverse submonoids of the symmetric inverse monoid on C and $R_{e,fp}(C) \subseteq R_{fp}(C)$.

The polycyclic monoid P_n on $A = \{a_1, \ldots, a_n\}$ is $IH^0(A^*)$ and a presentation for it is:

$$\langle A \cup A^{-1} \mid aa^{-1} = 1; ab^{-1} = 0 \text{ if } a \neq b \rangle.$$

Theorem (Lawson)

$D(P_n) \cong R_f(A^*) = R_{fp}(A^*)$.

Recall that

\[IH^0(C) = \{ \lambda_c \lambda_d^{-1} : c, d \in C \} \cup \{0\}. \]

Product:

\[
(\lambda_a \lambda_b^{-1})(\lambda_c \lambda_d^{-1}) = \begin{cases}
\lambda_{as} \lambda_{dt}^{-1} & \text{if } bC \cap cC = mC \text{ with } m = bs = ct \\
0 & \text{if } bC \cap cC = \emptyset.
\end{cases}
\]

\{\lambda_{a_1} \lambda_{b_1}^{-1}, \ldots, \lambda_{a_k} \lambda_{b_k}^{-1}\} \cup \{0\} \text{ is orthogonal}

iff \{a_1, \ldots, a_k\} \text{ and } \{b_1, \ldots, b_k\} \text{ are bases for projective right ideals of } C

iff for all } i, j \text{ with } i \neq j \text{ we have } a_i C \cap a_j C = \emptyset \text{ and } b_i C \cap b_j C = \emptyset.
Theorem
\[D(IH^0(C)) \cong R_{fp}(C). \]

Idea of proof: Let \(A \in D(IH^0(C)) \), say
\[A = \{ \lambda_{a_1} \lambda_{b_1}^{-1}, \ldots, \lambda_{a_k} \lambda_{b_k}^{-1} \} \cup \{0\}. \]
Then \(I = \{a_1, \ldots, a_k\}C \) and \(J = \{b_1, \ldots, b_k\}C \) are projective right ideals and

\[\theta_A : J \to I \text{ given by } (b_i c) \theta_A = a_i c \]

is a \(C \)-isomorphism. Now define

\[\theta : D(IH^0(C)) \to R_{fp}(C) \text{ by } \theta(A) = \theta_A \]

and verify that \(\theta \) is an isomorphism.
S is an inverse monoid with zero.

$S^e := \{ a \in S : Sa \text{ and } aS \text{ are essential} \}.$

S^e is an inverse submonoid of S called the essential part of S.

An idempotent e is essential if $e \in S^e$. This is true if and only if $ef \neq 0$ for all non-zero idempotents f of S.

$a \in S^e$ if and only if aa^{-1} and $a^{-1}a$ are essential idempotents.

The isomorphism θ restricts to an isomorphism

$$D^e(IH^0(C)) \cong R_{fp}^e(C).$$
Let C be right Ore and right LCM. Then every projective right ideal is principal. (Two principal right ideals cannot be disjoint).

So, all orthogonal subsets of $IH^0(C)$ have the form $\{\lambda_a \lambda_b^{-1}, 0\}$; hence the embedding of $IH^0(C)$ into $D(IH^0(C))$ is surjective.

Every nonzero idempotent of $IH^0(C)$ is essential. So

$$D^e(IH^0(C)) = IH(C).$$

Well known that the group of right fractions of C is isomorphic to $IH(C)/\sigma$.
Let C be a right LCM monoid with trivial group of units, and G be a group. Suppose we have actions so that we can form $D = C \bowtie G$. Then

1. D is left cancellative;
2. D is right LCM;
3. the group of units of D is $\{(1, g) : g \in G\}$;
4. the partially ordered set of principal right ideals of D is order-isomorphic to the partially ordered set of principal right ideals of C.
Remember that for any right LCM monoid B,

$$IH^0(B) = \{\lambda_a \lambda_b^{-1} : a, b \in B\}.$$

$$\lambda_a \lambda_b^{-1} = \lambda_c \lambda_d^{-1} \iff \exists \text{ unit } u \in B \text{ such that } au = c, bu = d.$$

Write elements of $IH^0(B)$ as \sim-equivalence classes $[a, b]$ where

$$(a, b) \sim (c, d) \iff \exists \text{ unit } u \in B \text{ such that } au = c, bu = d.$$

Now consider $IH^0(D)$ where $D = C \rhd G$. Elements are:

$$[(a, g), (b, h)] = [(a, gh^{-1}), (b, 1)]$$

so can represent elements by triples $(a, g, b) \in C \times G \times C$.
The following are equivalent:

1. \(X = \{(a_1, g_1, b_1), \ldots, (a_t, g_t, b_t)\} \cup \{0\} \) is an orthogonal subset of \(IH^0(D) \);

2. \(\overline{X} = \{\lambda a_1 \lambda_b^{-1}, \ldots, \lambda a_t \lambda_b^{-1}\} \cup \{0\} \) is an orthogonal subset of \(IH^0(C) \);

3. \(A = \{a_1, \ldots, a_t\} \) and \(B = \{b_1, \ldots, b_t\} \) are bases for projective right ideals of \(C \).

Consequently,

\[
D^e(IH^0(D)) = \{X : \overline{X} \in D^e(IH^0(C))\} = \{X : A, B \text{ are bases for essential projective right ideals}\}.
\]