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Inverse Semigroups

Definition
An element a′ ∈ S is an inverse of a ∈ S if a = aa′a and
a′ = a′aa′. If each element of S has exactly one inverse in S , then
S is an inverse semigroup.

Definition
For a, b ∈ S ,

aR b ⇔ a = bt and b = as for some s, t ∈ S

and

a σ b ⇔ ea = eb for some e ∈ E (S)

⇔ af = bf for some f ∈ E (S).
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E-unitary and Proper Inverse Semigroups

Definition
An inverse semigroup is proper if and only if R∩ σ = ι, i.e.

aR b and a σ b ⇔ a = b.

Definition
An inverse semigroup S is E-unitary if for all a ∈ S and all
e ∈ E (S), if ae ∈ E (S), then a ∈ E (S).

Proposition

Let S be an inverse semigroup. Then the following are equivalent:
i) S is E-unitary;
ii) S is proper;
iii) L ∩ σ = ι.
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McAlister’s Covering Theorem

Definition
Let S be an inverse semigroup. An E-unitary cover of S is an
E-unitary inverse semigroup U together with an onto morphism

ψ : U → S

where ψ is idempotent separating.

McAlister’s Covering Theorem

Every inverse semigroup has a E-unitary cover.
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McAlister Triples

Definition
Let G be a group and let (X,≤) be a partially ordered set where G
acts on X by order automorphisms. Let Y be a subset of X.
Suppose that the following conditions are satisfied:
P1) Y is a semilattice under ≤;
P2) GY = X;
P3) Y is an order ideal of X;
P4) For all g ∈ G , gY ∩ Y 6= ∅.
Then (G ,X,Y) is called a McAlister triple.
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P-Semigroups

Definition
Let (G ,X,Y) be a McAlister triple. The set

P(G ,X,Y) = {(A, g) ∈ Y× G : g−1A ∈ Y},

with the binary operation defined by

(A, g)(B, h) = (A ∧ gB, gh)

for (A, g), (B, h) ∈ P(G ,X,Y), is called a P-semigroup.
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McAlister’s P-Theorem

McAlister’s P-Theorem

Let P be a P-semigroup. Then P is an E-unitary inverse
semigroup. Conversely, any E-unitary inverse semigroup is
isomorphic to a P-semigroup.
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Restriction and Weakly Ample Semigroups

Definition
Suppose S is a semigroup and E a set of idempotents of S . Let
a, b ∈ S . Then a R̃E b if and only if for all e ∈ E ,

ea = a if and only if eb = b.

Definition
A semigroup S is left restriction (formally known as weakly left
E -ample) if the following hold:

1) E is a subsemilattice of S ;
2) Every element a ∈ S is R̃E -related to an idempotent in E
(idempotent denoted by a+);
3) R̃E is a left congruence;
4) For all a ∈ S and e ∈ E ,

ae = (ae)+a (the left ample condition).
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Proper Restriction and Weakly Ample Semigroups

Let S be a left restriction semigroup with distinguished semilattice
E . Then for a, b ∈ S ,

a σE b ⇔ ea = eb for some e ∈ E .

Definition
A left restriction semigroup is proper if and only if R̃E ∩ σE = ι.

A right restriction semigroup is proper if and only if L̃E ∩ σE = ι.
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Ample Semigroups

Definition
Let S be a semigroup and let a, b ∈ S . Then aR∗ b if and only if
for all x , y ∈ S1,

xa = ya⇔ xb = yb.

Proposition

Let R∗ and R̃ be the relations defined above on a semigroup S.
Then

R ⊆ R∗ ⊆ R̃E .
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Ample Semigroups

Definition
A semigroup S is left ample (formally known as left type A) if the
following hold:

1) E (S) is a subsemilattice of S ;
2) Every element a ∈ S is R∗-related to an idempotent in E (S)
(idempotent denoted by a+);
3) For all a ∈ S and e ∈ E (S),

ae = (ae)+a.

Definition
A left ample semigroup is proper if and only if R∗ ∩ σ = ι.

A right ample semigroup is proper if and only if L∗ ∩ σ = ι.
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Background Work: Structure Theorem for Proper Ample
Semigroups

Suppose the following hold:

(1) X is a partially ordered set;

(2) Y is a subsemilattice of X;

(3) ε ∈ X such that a ≤ ε for all a ∈ Y;

(4) T is a right cancellative monoid, which acts by order
endomorphisms on the left of X;

(5) TYi = X, where Yi = Y ∪ {i};
(6) For t ∈ T , ∃b ∈ Y such that b ≤ tε;

(7) If a, b ∈ Y, and a ≤ tε, then a ∧ tb ∈ Y;

(8) If a, b, c ∈ Y and a ≤ tε and b ≤ uε, then

(a ∧ tb) ∧ tuc = a ∧ t(b ∧ uc).
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Background Work: Structure Theorem for Proper Ample
Semigroups

Given (T ,X,Y) as above, we define

M(T ,X,Y) = {(a, t) ∈ Y× T : a ≤ t · ε},

with binary operation

(a, t)(b, u) = (a ∧ t · b, tu)

for (a, t), (b, u) ∈M(T ,X,Y).

The triple (T ,X,Y) is called a left admissible triple and
M(T ,X,Y) an M-semigroup.

Theorem (Fountain)

An M-semigroup is proper left ample. Conversely, a proper left
ample semigroup is isomorphic to an M-semigroup for some left
admissible triple (T ,X,Y).
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Background Work: Structure Theorem for Proper Ample
Semigroups

Let (T ,X,Y) be a left admissible triple and M(T ,X,Y) an
M-semigroup. The triple (T ,X,Y) is called an admissible triple if
the following hold:

(A) There is a (unique) element [a, t] ∈ Y for every
(a, t) ∈M(T ,X,Y) such that a ≤ t · [a, t] and ∀c, d ∈ Y,

a ∧ tc = a ∧ td ⇒ [a, t] ∧ c = [a, t] ∧ d ;

(B) For e ∈ Y and a ∈ Y with a ≤ t · ε,

a ∧ e = a ∧ t · [e ∧ a, t];

(C) For a, b ∈ Y with a, b ≤ t · ε, [a, t] = [b, t]⇒ a = b.

Theorem (Lawson)

Let S be a proper ample semigroup. Then S ∼= M(T ,X,Y) for
some admissible triple (T ,X,Y) . Conversely, every admissible
triple gives rise to an M-semigroup, which is proper ample.
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Background Work: Structure Theorem for Proper Left
Restriction Semigroups

Suppose the following hold:

(1) X is a semilattice;

(2) Y is a subsemilattice of X;

(3) ε ∈ X such that a ≤ ε for all a ∈ Y;

(4) T is a monoid, which acts by morphisms on the left of X;

(5) For all t ∈ T , there exists a ∈ Y such that a ≤ t · ε;

(6) For all a, b ∈ Y and all t ∈ T ,

a ≤ t · ε⇒ a ∧ t · b lies in Y.

Given (T ,X,Y) as above, we define

M(T ,X,Y) = {(a, t) ∈ Y× T : a ≤ t · ε},

with binary operation defined for (a, t), (b, u) ∈M(T ,X,Y) by

(a, t)(b, u) = (a ∧ t · b, tu).
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Background Work: Structure Theorems for Proper Left
Restriction and Weakly Left Ample Semigroups

Theorem (Branco, Gould, Gomes)

If T is an arbitrary monoid, a strong M-semigroup is a proper left
restriction semigroup. Conversely, a proper left restriction
semigroup is isomorphic to a strong M-semigroup.

Theorem (Gould, Gomes)

If T is a unipotent monoid, M(T ,X,Y) is a proper weakly left
ample semigroup. Conversely, a proper weakly left ample
semigroup is isomorphic to a strong M-semigroup where T is
unipotent.

Claire Cornock Supervised by Victoria Gould Structure Theorems for Proper Restriction Semigroups



Structure Theorem for Proper Left Ample Semigroups

Theorem
If T is right cancellative, M(T ,X,Y) is a proper left ample
semigroup. Conversely, a proper left ample semigroup is isomorphic
to some M(T ,X,Y), where T is right cancellative.
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Structure Theorem for Proper Inverse Semigroups

Theorem
A proper inverse semigroup is isomorphic to M(T ,X,Y), where T
is a group and M(T ,X,Y) is a ‘strong M-semigroup’ with altered
condition

(5) For every t ∈ T , ∃a ∈ Y such that a ≤ t · ε and t−1 · a ∈ Y

and

M(T ,X,Y) = {(a, t) ∈ Y× T : a ≤ t · ε, t−1 · a ∈ Y}.

Conversely, M(T ,X,Y), with altered condition (5) and T a group,
is a proper inverse semigroup.
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Structure Theorem for Proper Restriction Semigroups

Let (T ,X,Y) be strong left M-triple and M(T ,X,Y) a strong
M-semigroup. The triple (T ,X,Y) is called a strong M-triple if the
following hold:

(A) There is a (unique) element [a, t] ∈ Y for every
(a, t) ∈M(T ,X,Y) such that a ≤ t · [a, t] and ∀f ∈ Y,

a ≤ t · f ⇒ [a, t] ≤ f ;

(B) For all (a, t), (b, u), (x , y) ∈M(T ,X,Y),

∀e ∈ Y, [a ≤ t · e ⇔ b ≤ u · e]

⇒
∀f ∈ Y, [a ∧ t · x ≤ ty · f ⇔ b ∧ u · x ≤ uy · f ];

(C) For e ∈ Y and a ∈ Y with a ≤ t · ε,

a ∧ e = a ∧ t · [e ∧ a, t];

(D) For a, b ∈ Y with a, b ≤ t · ε, [a, t] = [b, t]⇒ a = b.
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Structure Theorem for Proper Restriction Semigroups

Theorem
Let S be a proper restriction semigroup. Then S ∼= M(T ,X,Y) for
some strong M-triple. Conversely, every strong M-triple gives rise
to a strong M-semigroup, which is proper restriction.
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Motivation for a two-sided structure theorem

Definition (Fountain, Gomes, Gould)

A monoid T acts doubly on a semilattice Y with identity, if

(i) T acts by morphisms on the left and right of Y;

(ii) (t · e) ◦ t = (1Y ◦ t)e;

(iii) t · (e ◦ t) = e(t · 1Y).
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Construction based on double actions

Suppose that

(1) X and X′ are semilattices;

(2) Y is a subsemilattice of both X and X′;

(3) ε ∈ X and ε′ ∈ X′ such that a ≤ ε, ε′ for all a ∈ Y;

(4) T is a monoid with identity 1 and T acts via morphisms on
the left of X, via ·, and on the right of X′, via ◦;

(5) for all t ∈ T , there exists a ∈ Y such that a ≤ t · ε.

Suppose that ∀t ∈ T and ∀e ∈ Y, the following hold:

(A) e ≤ t · ε⇒ e ◦ t ∈ Y;

(B) e ≤ ε′ ◦ t ⇒ t · e ∈ Y.

(C) e ≤ t · ε⇒ t · (e ◦ t) = e;

(D) e ≤ ε′ ◦ t ⇒ (t · e) ◦ t = e.
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Construction based on double actions

Let us define

M = M(T ,X,X′,Y) = {(a, t) ∈ Y× T : a ≤ t · ε},

with binary operation

(a, t)(b, u) = (a ∧ t · b, tu)

for (a, t), (b, u) ∈M(T ,X,X′,Y).
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Construction based on double actions

Proposition

If T is an arbitrary monoid, then M(T ,X,X′,Y) is proper
restriction.

Proposition

If T is a unipotent monoid, then M(T ,X,X′,Y) is proper weakly
ample.

Proposition

If T is a cancellative monoid, then M(T ,X,X′,Y) is proper ample.

Proposition

If T is a group, then M(T ,X,X′,Y) is a proper inverse semigroup.
Conversely, every proper inverse semigroup is isomorphic to some
M(T ,X,X′,Y), where T is a group.
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Construction based on partial actions

Suppose

(1) Y is a semilattice;

(2) T is a monoid, which acts partially on the right and left of Y

(denoted by ◦ and · respectively);

(3) T preserves the partial orders;

(4) The domain of each t ∈ T is an order ideal.

Suppose that for e ∈ Y and a ∈ T , the following hold:

(A) If ∃e ◦ a, then ∃a · (e ◦ a) and a · (e ◦ a) = e;

(B) If ∃a · e, then ∃(a · e) ◦ a and (a · e) ◦ a = e;

(C) For all t ∈ T , ∃e ∈ Y such that ∃e ◦ a.

Claire Cornock Supervised by Victoria Gould Structure Theorems for Proper Restriction Semigroups



Construction based on partial actions

Let us define

M = M(T ,Y) = {(e, a) ∈ Y× T : ∃e ◦ a},

with binary operation

(e, a)(f , b) = (a · (e ◦ a ∧ f ), ab)

for (e, a), (f , b) ∈M(T ,Y).
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Structure Theorems

Theorem
If T is an arbitrary monoid, M = M(T ,Y) is a proper restriction
semigroup and M/σ ∼= T . Conversely, every proper restriction
semigroup S is isomorphic to some M(T ,Y), where S/σ ∼= T .

Theorem
M = M(T ,Y) is a proper weakly ample semigroup if and only if T
is unipotent.

Theorem (Lawson)

M = M(T ,Y) is a proper ample semigroup if and only if T is right
cancellative.

Theorem (Petrich, Reilly)

M = M(T ,Y) is a proper inverse semigroup if and only if T is a
group.
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