Algebras of reduced E-Fountain semigroups generalizing the right ample identity

Itamar Stein

Shamoon College of Engineering

NBSAN York June 24, 2022

- Let S be a (finite) semigroup. Let C be a finite category. Let \Bbbk be a commutative unital ring.
- The semigroup algebra

$$\Bbbk S = \{ \sum k_i s_i \mid k_i \in \Bbbk \quad s_i \in S \}$$

 The category algebra kC is the free k-module of all linear combinations

$$\{\sum_{i=1}^n k_i m_i \mid k_i \in \mathbb{k}, \ m_i \text{ morphism}\}\$$

• Let S be a (finite) inverse semigroup. Let G be its associated inductive groupoid.

Theorem (Steinberg 2006)

Let \Bbbk be any commutative unital ring. Then $\Bbbk S \simeq \Bbbk G$.

Theorem (IS 2016)

A similar isomorphism holds for the monoid of all partial functions \mathcal{PT}_n and a certain associated category.

- This was useful in computing many invariants of the algebra $\mathbb{C} \mathcal{PT}_n$.
- Let S be a (finite) E-Ehresmann semigroup which satisfies the right ample identity. Let C be its associated Ehresmann category.

Theorem (IS 2017)

Let \Bbbk be any commutative unital ring. Then $\Bbbk S \simeq \Bbbk C$.

• The Catalan monoid - C_n .

 $\{f:\{1,\ldots,n\}\to\{1,\ldots,n\}\mid i\leq f(i),\quad i\leq j\implies f(i)\leq f(j)\}$

Theorem (Margolis&Steinberg 2018)

A similar isomorphism holds for the Catalan monoid C_n and a certain associated category.

Question

Can we generalize the theorem on Ehresmann semigroups to include the case of the Catalan monoid??

- Semilattices (Solomon 1967)
- Ample semigroups (Guo&Chen 2012)
- P-Ehresmann semigroups (Wang 2017)
- Strict right ample semigroups (Guo&Guo 2018)

• Let S be a semigroup and let $E \subseteq S$ be a subset of idempotents.

•
$$a \tilde{\mathcal{L}}_E b \iff \forall e \in E$$
 $ae = a \iff be = b$

•
$$a\tilde{\mathcal{R}}_E b \iff \forall e \in E$$
 $ea = a \iff eb = b$.

• $\mathcal{L} \subseteq \tilde{\mathcal{L}}_E$ $\mathcal{R} \subseteq \tilde{\mathcal{R}}_E$

• S inverse semigroup, E = E(S). $\tilde{\mathcal{L}}_E = \mathcal{L}$, $\tilde{\mathcal{R}}_E = \mathcal{R}$

•
$$S$$
 monoid, $E=\{1\}$. $ilde{\mathcal{L}}_E= ilde{\mathcal{R}}_E=S imes S$

- $S = \mathcal{B}_n$ (binary relations) $S = \mathcal{PT}_n$ (partial functions). E = partial identities. $f \tilde{\mathcal{L}}_E g \iff \text{dom}(f) = \text{dom}(g), \quad f \tilde{\mathcal{R}}_E g \iff \text{im}(f) = \text{im}(g).$ (composition right to left)
- $S = C_n$ (Catalan monoid), $E = E(C_n)$. $f \tilde{\mathcal{L}}_{E}g \iff \ker(f) = \ker(g), \quad f \tilde{\mathcal{R}}_{E}g \iff \operatorname{im}(f) = \operatorname{im}(g).$

Preliminaries - reduced E-Fountain semigroups

- S is called E-Fountain if every $\tilde{\mathcal{L}}_E$ -class and every $\tilde{\mathcal{R}}_E$ -class contains an idempotent from E.
- S is called reduced E-Fountain if in addition

$$\forall e, f \in E \quad ef = e \iff fe = e$$

- » In this case, every $\tilde{\mathcal{L}}_E$ -class and every $\tilde{\mathcal{R}}_E$ -class contains a unique idempotent from E (denoted a^* and a^+ for $a \in S$).
- » $a^*(a^+)$ is the minimal right (resp. left) identity of a from E (with respect to the natural partial order on idempotents).
- S satisfies the congruence condition if $\tilde{\mathcal{L}}_E$ is a right congruence and $\tilde{\mathcal{R}}_E$ is a left congruence. Equivalently: $(ab)^* = (a^*b)^*$ and $(ab)^+ = (ab^+)^+$.

» In this case we can associate with S a category C(S). Objects: E. Morphisms: S. dom $(a) = a^*$, range $(a) = a^+$.

Preliminaries - reduced E-Fountain semigroups

- We consider the class of reduced *E* Fountain semigroups which satisfy the congruence condition.
- Subclass: If *E* is a subsemilattice (commutative subsemigroup) then *S* is called *E*-Ehresmann.
- Inverse semigroups, \mathcal{B}_n and \mathcal{PT}_n are Ehresmann. The Catalan monoid \mathcal{C}_n is not

reduced E - Fountain + congruence condition

- Let S be a reduced E-Fountain semigroup + congruence condition. S satisfies the right ample identity if ea = a(ea)* for every e ∈ E and a ∈ S.
- Equivalent: $Ea \subseteq aE$ for every $a \in S$.
- Equivalent: S can be embedded in \mathcal{PT}_n as an unary semigroup (with \cdot , *)

Fact

If S satisfies the right ample identity then it is E-Ehresmann (aka E-Ehresmann right restriction).

reduced E - Fountain + congruence condition

Let S be a reduced E-Fountain semigroup + congruence condition.
 We say that S satisfies the generalized right ample identity if for every e ∈ E and a ∈ S

$$(e(a(ea)^*)^+)^* = (a(ea)^*)^+$$

• The Catalan monoid C_n satisfies the generalized right ample identity (Margolis&Steinberg 2018).

Claim

If S is Ehresmann then: generalized right ample \iff right ample

reduced E - Fountain + congruence condition

- Fix S a finite reduced E-Fountain + congruence condition. Define a relation a ≤₁ b if a = be for some e ∈ E. (Beware! ≤₁ is not even a pre-order).
- Let $\varphi : \Bbbk S \to \Bbbk C(S)$ be the linear transformation defined (on basis elements) by

$$\varphi(\alpha) = \sum_{\beta \trianglelefteq_I \alpha} \beta$$

Theorem (IS 2022)

 φ is a homomorphism of \Bbbk - algebras if and only if S satisfies the generalized right ample identity. If \leq_l is contained in a partial order then φ is an isomorphism.

Big Picture - revisited

reduced E-Fountain + congruence condition + generalized right ample

• The generalized right ample identity does not look natural. There is only one motivating example (the Catalan monoid).

New Goal

Convince that the generalized right ample identity is a reasonable property. Find more examples.

Generalized right ample identity - What does it mean??

Let $\widetilde{\mathcal{L}}_E(e)$ be the $\widetilde{\mathcal{L}}_E$ -class of $e \in E$. Then $\widetilde{\mathcal{L}}_E(e)$ is a partial left S-act (= S acts on the left of $\widetilde{\mathcal{L}}_E(e)$ by partial functions)

$$s * x = \begin{cases} sx & sx \in \widetilde{\mathcal{L}}_E(e) \\ undefined & sx \notin \widetilde{\mathcal{L}}_E(e) \end{cases} \quad (x \in \widetilde{\mathcal{L}}_E(e), \quad s \in S) \end{cases}$$

Generalized right ample identity - What does it mean??

Fact

Every $\alpha \in S$ induces a function $r_{\alpha} : \widetilde{\mathcal{L}}_{E}(\alpha^{+}) \to \widetilde{\mathcal{L}}_{E}(\alpha^{*})$ defined by $r_{\alpha}(x) = x\alpha$.

Proof.

Assume
$$x \in \widetilde{\mathcal{L}}_{E}(\alpha^{+}) \implies x^{*} = \alpha^{+}$$
. Then
 $(x\alpha)^{*} = (x^{*}\alpha)^{*} = (\alpha^{+}\alpha)^{*} = \alpha^{*}$ so $x\alpha \in \widetilde{\mathcal{L}}_{E}(\alpha^{*})$.

Proposition (IS)

S is generalized right ample if and only if for every $\alpha \in S$, r_{α} is a homomorphism of partial left *S*-acts.

Corollary

Assume S is E-Ehresmann. S is right ample if and only if for every $\alpha \in S$, r_{α} is a homomorphism of partial left S-acts.

This gives a concrete interpretation of the associated category C(S).

Proposition

Let S be a reduced E-Fountain semigroup + congruence condition + generalized right ample. The category $C(S)^{op}$ is isomorphic to the category whose objects are left S-acts of the form $\widetilde{\mathcal{L}}_E(e)$ for $e \in E$, and whose morphisms are all homomorphisms of left partial S-acts between them.

Modules and homomorphisms

 Let k be a field and let kS be the associated semigroup algebra over some field k.

$$\Bbbk S = \{ \sum k_i s_i \mid k_i \in \Bbbk \quad s_i \in S \}$$

Let *L̃_E(e)* be the *L̃_E*-class of *e* ∈ *E*. Let k*̃_L<i>E*(*e*) be a k-vector space of formal linear combinations with basis *L̃_E(e)*. Then k*̃_L<i>E*(*e*) is a left k*S*-module according to

$$s * x = egin{cases} sx & sx \in \widetilde{\mathcal{L}}_E(e) \ 0 & sx \notin \widetilde{\mathcal{L}}_E(e) \end{cases} \quad (x \in \widetilde{\mathcal{L}}_E(e), \quad s \in S) \end{cases}$$

Now, r_α is a linear transformation r_α : k*L̃*_E(α⁺) → k*̃*_E(α^{*}), defined on basis elements r_α(x) = xα.

Proposition

Let S be a reduced E-Fountain semigroup + congruence condition. S is generalized right ample if and only if for every $\alpha \in S$, r_{α} is a homomorphism of left &S-modules.

Corollary

In this case, the category $C(S)^{\text{op}}$ is isomorphic to the category whose objects are left &S-modules of the form $\&\widetilde{\mathcal{L}}_E(e)$ for $e \in E$, and whose morphisms are homomorphisms of left &S-modules of the form r_{α} .

Proposition

If S is finite. The category $\&C(S)^{op}$ is isomorphic to the category whose objects are left &S-modules of the form $\&\widetilde{\mathcal{L}}_E(e)$ for $e \in E$, and whose morphisms are all homomorphisms of left &S-modules between them.

Pierce decomposition

• Let A be an algebra and fix a complete set of orthogonal idempotents $E = \{e_1, \ldots, e_n\}$ (not necessarily primitive!).

$$\sum_{i=1}^n e_i = 1_A, \quad e_i e_j = 0$$

• We can associate with A a linear category $\mathcal{L}(A)$ whose objects are the pojective modules of the form Ae_i and its morphisms are the A-module homomorphisms between them. The linear category $\mathcal{L}(A)$ is called a Pierce decomposition of A.

Proposition

If S is finite and \leq_I is contained in a partial order then modules of the form $\Bbbk \widetilde{\mathcal{L}}_E(e)$ for $e \in E$ are projective modules and $\Bbbk C(S)^{op}$ is a Pierce decomposition of $\Bbbk S$.

• The category $C(S)^{op}$ is a "discrete" form of a Pierce decomposition.

Let V be a Hilbert space (e.g. V = ℝⁿ). Let S = {T : V → V | T bounded}. For every closed subspace U ⊆ V, let P_U be the associated orthogonal projection P_U : V → U.Choose E = {P_U | U ⊆ V, U closed}. Note that E is not a subsemilattice. • The Catalan monoid - C_n .

$$\{f:\{1,\ldots,n\}\to\{1,\ldots,n\}\mid i\leq f(i),\quad i\leq j\implies f(i)\leq f(j)\}$$

• Order preserving functions with a fixed point - \mathcal{OPF}_n .

$$\{f:\{1,\ldots,n\}\to\{1,\ldots,n\}\mid f(n)=n, \quad i\leq j\implies f(i)\leq f(j)\}$$

$$E = E(\mathcal{C}_n)$$
 (Note that $\mathcal{C}_n \subseteq \mathcal{OPF}_n$).

• For $S = \mathcal{OPF}_n$ we have

$$f \tilde{\mathcal{L}}_{E}g \iff f \mathcal{L}g \iff \ker(f) = \ker(g)$$

 $f \tilde{\mathcal{R}}_{E}g \iff f \mathcal{R}g \iff \operatorname{im}(f) = \operatorname{im}(g).$

• The algebra \mathbb{kOPF}_n is semisimple.

Thank you!