Semigroups of inverse quotients

Georgia Schneider

25 March 2022

Let S be a subsemigroup of a group G. Then G is a **group of left quotients** of S if every $g \in G$ can be written as $g = a^{-1}b$ for some $a, b \in S$.

Example (Constructing the Integers from the Natural Numbers)

Let $G = (\mathbb{Z}, +)$ be the group of integers under addition, and let $S = (\mathbb{N}, +)$ be the subsemigroup of natural numbers.

We see that every $g \in G$ can be written as $g = n - m = m^{-1}n$ for some $m, n \in S$, so G is a group of left quotients of S.

Let S be a subsemigroup of a monoid M. Then M is a **monoid of classical left** quotients of S if

- (i) for every cancellative $a \in S$, there exists an $a^{-1} \in M$
- (ii) every $m \in M$ can be written as $m = a^{-1}b$ for some $a, b \in S$.

Example (Constructing the Rationals from the Integers)

Let $Q = (\mathbb{Q}, \times)$ be the monoid of rationals under multiplication, and let $Z = (\mathbb{Z}, \times)$ be the subsemigroup of integers.

We see that every $q \in Q$ can be written as $q = \frac{n}{m} = m^{-1}n$ for some $m, n \in Z$, so Q is a monoid of classical left quotients of Z.

Let S be a subsemigroup of a semigroup Q. Then Q is a **semigroup of left** Fountain-Gould quotients of S, and S is a **left Fountain-Gould order** in Q if

- (i) every square-cancellable element lies in a subgroup of Q
- (ii) every $q \in Q$ can be written as $q = a^{\#}b$ for some $a, b \in S$, where $a^{\#}$ denotes the inverse of a in some subgroup of Q.

Moreover if every every $q \in Q$ can be written as $q = a^{\#}b$, where $a \mathcal{R}^Q b$, we say that Q is **straight** over S, or S is **straight** in Q.

Let S be a subsemigroup of an inverse semigroup Q.

Then Q is a **semigroup of left I-quotients** of S, and S is a **left I-order** in Q if every $q \in Q$ can be written as $q = a^{-1}b$ for some $a, b \in S$, where a^{-1} denotes the inverse in the sense of inverse semigroup theory.

Moreover if every every $q \in Q$ can be written as $q = a^{-1}b$, where $a \mathcal{R}^Q b$, we say that Q is semigroup of straight left l-quotients of S, or S is straight left l-order in Q.

Example (Bicyclic Monoid)

Let $B = \langle a, b | ab = 1 \rangle$ be the Bicyclic Monoid and $S = \{a^n | n \in \mathbb{N}^0\}$. *B* is an inverse semigroup with $(b^m a^n)^{-1} = (b^n a^m)$, and every element in *B* can be expressed as $b^m a^n = (a^m)^{-1} a^n$, so *B* is a semigroup of left l-quotients of *S*. Additionally, since *S* is contained within a single \mathcal{R}^B -class, we see that *S* is straight in *B*. Lemma (Gould)

Let S be a left I-order in Q. Then S is straight in Q if and only if S intersects every \mathcal{L} -class of Q.

Proof.

Let S be straight in Q, and let $q = a^{-1}b \in Q$ such that $a, b \in S$ and $a \mathcal{R}^Q b$. Then

$$q^{-1}q = b^{-1}aa^{-1}b = b^{-1}bb^{-1}b = b^{-1}b,$$

and so $b \in S \cap L_q$.

Proof (cont.)

Conversely, suppose S intersects every \mathcal{L} -class of Q. Let $q \in Q$; we know that $q = a^{-1}b$, where $a, b \in S$. Then

$$q = a^{-1}aa^{-1}bb^{-1}b = a^{-1}fb$$
,

where $f = aa^{-1}bb^{-1} \in E(Q)$.

Since S intersects every \mathcal{L} -class, there exists $u \in S \cap L_f$, and so $f = u^{-1}u$. Hence

$$(ua)(ua)^{-1} = uaa^{-1}u^{-1} = ufaa^{-1}u^{-1} = ufu^{-1} = uu^{-1}$$

Similarly $(ub)(ub)^{-1} = uu^{-1}$. We can therefore write

$$q = a^{-1} f b = a^{-1} u^{-1} u b = (ua)^{-1} (ub),$$

where $ua \mathcal{R}^Q ub$. It follows that Q is straight over S.

Theorem (S.)

Let S be a left I-order in a finite inverse semigroup, Q. Then S is straight in Q.

Proof.

By the Vagner-Preston Theorem, we know that $Q \leq \mathcal{I}_n$ for some *n*. Therefore

$$a \mathcal{R}^{Q} b \iff aa^{-1} = bb^{-1} \iff \operatorname{dom}(a) = \operatorname{dom}(b),$$

$$a \mathcal{L}^{Q} b \iff a^{-1}a = b^{-1}b \iff \operatorname{im}(a) = \operatorname{im}(b),$$

$$a \leq_{\mathcal{R}^{Q}} b \iff aa^{-1}bb^{-1} = aa^{-1} \iff \operatorname{dom}(a) \subseteq \operatorname{dom}(b),$$

$$a \leq_{\mathcal{L}^{Q}} b \iff a^{-1}ab^{-1}b = a^{-1}a \iff \operatorname{im}(a) \subseteq \operatorname{im}(b).$$

Proof (cont.)

We define the rank of an element $a \in Q$ as

$$\operatorname{rank}(a) = |\operatorname{dom}(a)| = |\operatorname{im}(a)|.$$

We can extend the definition of rank to $\mathcal R\text{-classes}$ and $\mathcal L\text{-classes}$ as

$$\operatorname{rank}(R_a) = \operatorname{rank}(L_a) = \operatorname{rank}(a).$$

This is obviously well-defined.

Proof (cont.)

Assume that S is not straight in Q.

Then S does not intersect every \mathcal{L} -class of Q.

Let L be an \mathcal{L} -class of Q that does not intersect S of largest possible rank.

Let the rank of L be k, and let e be the idempotent in L.

Since S is an I-order in Q, we know that there exists $a, b, \in S$ such that

$$e = a^{-1}b.$$

Since e is an idempotent, we have that

$$e=e^{-1}=b^{-1}a\leq_{\mathcal{L}^Q}a.$$

Therefore $\operatorname{im}(e) \subseteq \operatorname{im}(a)$. Since *L* doesn't intersect *S*, we know that $e \not L a$. Therefore $\operatorname{im}(a) \neq \operatorname{im}(b)$, and so $\operatorname{im}(e) \subset \operatorname{im}(a)$ strictly. Hence $\operatorname{rank}(a) > \operatorname{rank}(e) = k$. Proof (cont.) We know that dom(aa^{-1}) = dom(a). Therefore rank(aa^{-1}) = rank(a) > k. Since aa^{-1} is of larger rank than k, we know that $L_{aa^{-1}} \cap S \neq \emptyset$. Let $s \in L_{aa^{-1}} \cap S$. Then

$$e = a^{-1}b \mathcal{L} aa^{-1}b = s^{-1}sb \mathcal{L} sb.$$

Therefore $sb \in L \cap S$. Contradiction.

Fin