Semigroups of inverse quotients

Georgia Schneider

25 March 2022

Groups of Left Quotients

Definition
 Let S be a subsemigroup of a group G. Then G is a group of left quotients of S if every $g \in G$ can be written as $g=a^{-1} b$ for some $a, b \in S$.

Example (Constructing the Integers from the Natural Numbers)

Let $G=(\mathbb{Z},+)$ be the group of integers under addition, and let $S=(\mathbb{N},+)$ be the subsemigroup of natural numbers.

We see that every $g \in G$ can be written as $g=n-m=m^{-1} n$ for some $m, n \in S$, so G is a group of left quotients of S.

Monoids of Classical Left Quotients

Definition

Let S be a subsemigroup of a monoid M. Then M is a monoid of classical left quotients of S if
(i) for every cancellative $a \in S$, there exists an $a^{-1} \in M$
(ii) every $m \in M$ can be written as $m=a^{-1} b$ for some $a, b \in S$.

Example (Constructing the Rationals from the Integers)

Let $Q=(\mathbb{Q}, \times)$ be the monoid of rationals under multiplication, and let $Z=(\mathbb{Z}, \times)$ be the subsemigroup of integers.
We see that every $q \in Q$ can be written as $q=\frac{n}{m}=m^{-1} n$ for some $m, n \in Z$, so Q is a monoid of classical left quotients of Z.

Semigroups of Left Fountain-Gould Quotients

Definition

Let S be a subsemigroup of a semigroup Q. Then Q is a semigroup of left Fountain-Gould quotients of S, and S is a left Fountain-Gould order in Q if
(i) every square-cancellable element lies in a subgroup of Q
(ii) every $q \in Q$ can be written as $q=a^{\#} b$ for some $a, b \in S$, where $a^{\#}$ denotes the inverse of a in some subgroup of Q.
Moreover if every every $q \in Q$ can be written as $q=a^{\#} b$, where $a \mathcal{R}^{Q} b$, we say that Q is straight over S, or S is straight in Q.

Semigroups of left l-quotients

Definition

Let S be a subsemigroup of an inverse semigroup Q.
Then Q is a semigroup of left I-quotients of S, and S is a left I-order in Q if every $q \in Q$ can be written as $q=a^{-1} b$ for some $a, b \in S$, where a^{-1} denotes the inverse in the sense of inverse semigroup theory.
Moreover if every every $q \in Q$ can be written as $q=a^{-1} b$, where $a \mathcal{R}^{Q} b$, we say that Q is semigroup of straight left l-quotients of S, or S is straight left l-order in Q.

Example (Bicyclic Monoid)

Let $B=\langle a, b \mid a b=1\rangle$ be the Bicyclic Monoid and $S=\left\{a^{n} \mid n \in \mathbb{N}^{0}\right\}$.
B is an inverse semigroup with $\left(b^{m} a^{n}\right)^{-1}=\left(b^{n} a^{m}\right)$, and every element in B can be expressed as $b^{m} a^{n}=\left(a^{m}\right)^{-1} a^{n}$, so B is a semigroup of left l-quotients of S. Additionally, since S is contained within a single \mathcal{R}^{B}-class, we see that S is straight in B.

Left I-orders intersecting every \mathcal{L}-class

Lemma (Gould)

Let S be a left l-order in Q.
Then S is straight in Q if and only if S intersects every \mathcal{L}-class of Q.

Proof.

Let S be straight in Q, and let $q=a^{-1} b \in Q$ such that $a, b \in S$ and $a \mathcal{R}^{Q} b$. Then

$$
q^{-1} q=b^{-1} a a^{-1} b=b^{-1} b b^{-1} b=b^{-1} b
$$

and so $b \in S \cap L_{q}$.

Proof (cont.)

Conversely, suppose S intersects every \mathcal{L}-class of Q.
Let $q \in Q$; we know that $q=a^{-1} b$, where $a, b \in S$. Then

$$
q=a^{-1} a a^{-1} b b^{-1} b=a^{-1} f b,
$$

where $f=a a^{-1} b b^{-1} \in E(Q)$.
Since S intersects every \mathcal{L}-class, there exists $u \in S \cap L_{f}$, and so $f=u^{-1} u$. Hence

$$
(u a)(u a)^{-1}=u a a^{-1} u^{-1}=u f a a^{-1} u^{-1}=u f u^{-1}=u u^{-1} .
$$

Similarly $(u b)(u b)^{-1}=u u^{-1}$.
We can therefore write

$$
q=a^{-1} f b=a^{-1} u^{-1} u b=(u a)^{-1}(u b),
$$

where ua $\mathcal{R}^{Q} u b$. It follows that Q is straight over S.

Finite left I-orders are straight

Theorem (S.)

Let S be a left l-order in a finite inverse semigroup, Q. Then S is straight in Q.

Proof.

By the Vagner-Preston Theorem, we know that $Q \leq \mathcal{I}_{n}$ for some n. Therefore

$$
\begin{aligned}
a \mathcal{R}^{Q} b & \Longleftrightarrow a a^{-1}=b b^{-1} \Longleftrightarrow \operatorname{dom}(a)=\operatorname{dom}(b), \\
a \mathcal{L}^{Q} b & \Longleftrightarrow a^{-1} a=b^{-1} b \Longleftrightarrow \operatorname{im}(a)=\operatorname{im}(b), \\
a \leq_{\mathcal{R}^{Q}} b & \Longleftrightarrow a a^{-1} b b^{-1}=a a^{-1} \Longleftrightarrow \operatorname{dom}(a) \subseteq \operatorname{dom}(b), \\
a \leq_{\mathcal{L}^{Q}} b & \Longleftrightarrow a^{-1} a b^{-1} b=a^{-1} a \Longleftrightarrow \operatorname{im}(a) \subseteq \operatorname{im}(b) .
\end{aligned}
$$

Proof (cont.)

We define the rank of an element $a \in Q$ as

$$
\operatorname{rank}(a)=|\operatorname{dom}(a)|=|\operatorname{im}(a)|
$$

We can extend the definition of rank to \mathcal{R}-classes and \mathcal{L}-classes as

$$
\operatorname{rank}\left(R_{a}\right)=\operatorname{rank}\left(L_{a}\right)=\operatorname{rank}(a) .
$$

This is obviously well-defined.

Proof (cont.)

Assume that S is not straight in Q.
Then S does not intersect every \mathcal{L}-class of Q.
Let L be an \mathcal{L}-class of Q that does not intersect S of largest possible rank.
Let the rank of L be k, and let e be the idempotent in L.
Since S is an l-order in Q, we know that there exists $a, b, \in S$ such that

$$
e=a^{-1} b
$$

Since e is an idempotent, we have that

$$
e=e^{-1}=b^{-1} a \leq_{\mathcal{L}^{Q}} a .
$$

Therefore $\operatorname{im}(e) \subseteq \operatorname{im}(a)$.
Since L doesn't intersect S, we know that $e \ell$ a .
Therefore $\mathrm{im}(a) \neq \operatorname{im}(b)$, and so $\mathrm{im}(e) \subset \operatorname{im}(a)$ strictly.
Hence $\operatorname{rank}(a)>\operatorname{rank}(e)=k$.

Proof (cont.)

We know that $\operatorname{dom}\left(a a^{-1}\right)=\operatorname{dom}(a)$. Therefore

$$
\operatorname{rank}\left(a a^{-1}\right)=\operatorname{rank}(a)>k .
$$

Since $a a^{-1}$ is of larger rank than k, we know that $L_{a a^{-1}} \cap S \neq \emptyset$.
Let $s \in L_{\mathrm{aa}^{-1}} \cap S$. Then

$$
e=a^{-1} b \mathcal{L} a a^{-1} b=s^{-1} s b \mathcal{L} s b .
$$

Therefore $s b \in L \cap S$. Contradiction.

Fin

