# The $\mathcal{R}$ -height of Semigroups and their Bi-ideals

#### Craig Miller

University of York

#### NBSAN: 25/03/2022

Craig Miller (University of York) The *R*-height of Semigroups and their Bi-idea NBSAN: 25/03/2022

< 6 b

→ ∃ →





- Bounds
- Can the bounds be attained?

2/22

Green's preorder  $\leq_{\mathcal{R}}$  is defined by

$$a \leq_{\mathcal{R}} b \Leftrightarrow aS^1 \subseteq bS^1.$$

We write  $a \leq_S b$  for  $a \leq_R b$ , and  $a <_S b$  if  $a \leq_R b$  but  $aS^1 \neq bS^1$ .

The pre-order  $\leq_{\mathcal{R}}$  induces a partial order on the set of  $\mathcal{R}$ -classes of S, given by  $R_a \leq R_b \Leftrightarrow a \leq_S b$ .

The  $\mathcal{R}$ -height of S, denoted by  $H_{\mathcal{R}}(S)$ , is the height of the poset  $S/\mathcal{R}$ , i.e. the supremum of the lengths of chains of  $\mathcal{R}$ -classes of S.

э

A **bi-ideal** of S is a subsemigroup B such that  $BSB \subseteq B$ .

Bi-ideals include right ideals and left ideals (and hence ideals).

- If *B* is a bi-ideal and *T* is a subsemigroup of *S*, and  $C = B \cap T \neq \emptyset$ , then *C* is a bi-ideal of *T*.
- The intersection of bi-ideals is either empty or a bi-ideal.
- If *B* is a bi-ideal and *X* is any subset of *S*, then *BX* and *XB* are bi-ideals of *S*.
- Bi-ideals of right simple semigroups are left ideals.

A **minimal** (**right**) **ideal** is a (right) ideal that contains no proper (right) ideal.

If it exists, the minimal ideal of *S*, also known as the **kernel** of *S*, will be denoted by K(S).

If S has min. right ideals, then K(S) is the union of all the min. right ideals. If S additionally has min. left ideals, then K(S) is completely simple.

**Lemma**. If  $H_{\mathcal{R}}(S)$  is finite, then *S* has minimal right ideals. Moreover,  $H_{\mathcal{R}}(S) = 1$  if and only if *S* is a union of minimal right ideals.

#### Definitions and basic facts



• Can the bounds be attained?

Let *S* be a semigroup with finite  $\mathcal{R}$ -height, and let *B* be a bi-ideal of *S*. Let *n* denote the maximum length of a chain of  $\mathcal{R}$ -classes of *S* that intersect *B*.

Theorem.  $H_{\mathcal{R}}(B) \leq 3n - 1$ .

**Theorem**. If K(S) is completely simple, then  $H_{\mathcal{R}}(B) \leq 3n - 2$ .

**Theorem**. If every element of *B* has a local right identity (i.e.  $bB \subseteq B$  for all  $b \in B$ ), then  $H_{\mathcal{R}}(B) = n$ .

< 日 > < 同 > < 回 > < 回 > < □ > <

Let *S* be a semigroup with finite  $\mathcal{R}$ -height, and let *A* be a left ideal of *S*. Let *n* denote the maximum length of a chain of  $\mathcal{R}$ -classes of *S* that intersect *A*.

Theorem.  $H_{\mathcal{R}}(A) \leq 2n$ .

**Theorem**. If K(S) is completely simple, then  $H_{\mathcal{R}}(A) \leq 2n - 1$ .

**Theorem**. If  $A \subseteq \text{Reg}(S)$ , then  $H_{\mathcal{R}}(A) = n$ .

Let *S* be a semigroup with finite  $\mathcal{R}$ -height, and let *A* be a right ideal of *S*. Let *n* denote the maximum length of a chain of  $\mathcal{R}$ -classes of *S* contained in *A*.

Theorem.  $H_{\mathcal{R}}(A) \leq 2n-1$ .

**Theorem**. If *A* is a two-sided ideal, then  $H_{\mathcal{R}}(A) \leq n$ .

#### Definitions and basic facts



• Can the bounds be attained?

< 17 ▶

10/22

## Problems

- For each n ∈ N, does there exist a semigroup S and a bi-ideal B of S such that H<sub>R</sub>(S) = n and H<sub>R</sub>(B) = 3n 1?
- For each  $n \in \mathbb{N}$ , does there exist a semigroup *S* with a completely simple kernel and a bi-ideal *B* of *S* such that  $H_{\mathcal{R}}(S) = n$  and  $H_{\mathcal{R}}(B) = 3n 2$ ?
- For each n ∈ N, does there exist a semigroup S and a left ideal A of S such that H<sub>R</sub>(S) = n and H<sub>R</sub>(A) = 2n?
- For each  $n \in \mathbb{N}$ , does there exist a semigroup *S* with a completely simple kernel and a left ideal *A* of *S* such that  $H_{\mathcal{R}}(S) = n$  and  $H_{\mathcal{R}}(A) = 2n 1$ ?
- For each  $n \in \mathbb{N}$ , does there exist a semigroup *S* and a right ideal *A* of *S* such that  $H_{\mathcal{R}}(S) = n$  and  $H_{\mathcal{R}}(A) = 2n 1$ ?
- For each n ∈ N, does there exist a semigroup S with an ideal A such that H<sub>R</sub>(S) = H<sub>R</sub>(A) = n? ✓

・ロト ・ 四ト ・ ヨト ・ ヨト …

3

11/22

**Theorem**. Let  $n \ge 2$ . Let *S* be defined by the presentation

$$\langle x, y, z, t | xyzt = x, yzty = y, ztyz = z, tyzt = t, w = 0$$
  
 $(w \in \{x^n, y^2, z^2, t^2, xz, xt, yx, yt, zx, zy, tz, tx^{n-1}\})\rangle$ 

Let  $B = X \cup XS^1X$  where  $X = \{x, y, z, tx\}$ . Then  $H_{\mathcal{R}}(S) = n$  and  $H_{\mathcal{R}}(B) = 3n - 2$ .

$$S = \left(\bigcup_{i=1}^{n-1} (R_i \cup S_i \cup U_i \cup V_i)\right) \cup \{0\},$$

where  $R_i = \{x^i, x^iy, x^iyz\}, S_1 = \{y, yz, yzt\}, S_j = yztR_{j-1}, U_1 = \{z, zt, zty\}, U_j = ztR_{j-1}, V_1 = \{t, ty, tyz\}, V_j = tR_{j-1} (2 \le j \le n-1).$ 

 $B = S \setminus \{yzt, zt, t, ty, tyz\}.$ 

э.

### Poset of $\mathcal{R}$ -classes of S

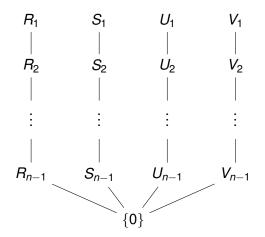


Figure: The poset of  $\mathcal{R}_S$ -classes (left) and the poset of  $\mathcal{R}_B$ -classes (right)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

For each  $n \in \mathbb{N}$ , does there exist a semigroup *S* and a left ideal *A* of *S* such that  $H_{\mathcal{R}}(S) = n$  and  $H_{\mathcal{R}}(A) = 2n$ ?

**Proposition**. Let *S* be a right simple semigroup (so  $H_{\mathcal{R}}(S) = 1$ ) that is not completely simple, and let *A* be a principal left ideal  $S^1a$ . Then the  $\mathcal{R}$ -classes of *A* are  $\{a\}$  and  $A \setminus \{a\} = Sa$ , and hence  $H_{\mathcal{R}}(A) = 2$ .

**Theorem**. Let  $n \ge 2$ . Let *S* be a semigroup with a left ideal *A* such that  $H_{\mathcal{R}}(S) = n - 1$  and  $H_{\mathcal{R}}(A) = 2(n - 1)$ . Let *T* be any right simple semigroup that is not completely simple, and let *U* be the semigroup defined by the presentation

$$|S, T| ab = a \cdot b, cd = c \cdot d, ac = c (a, b \in S, c, d \in T) \rangle.$$

Fix  $c \in T$ , and let  $B = T^1(A \cup \{c\})$ . Then  $H_{\mathcal{R}}(U) = n$  and  $H_{\mathcal{R}}(B) = 2n$ .

 $U = S \cup T \cup TS$  and  $K(U) = T \cup TS$ .

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

## Posets of $\mathcal{R}$ -classes

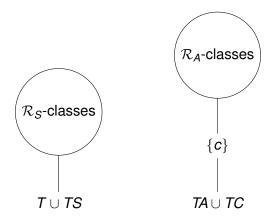


Figure: The poset of  $\mathcal{R}_U$ -classes (left) and the poset of the  $\mathcal{R}_B$ -classes (right).

< ロ > < 同 > < 回 > < 回 >

For each  $n \in \mathbb{N}$ , does there exist a semigroup *S* with a completely simple kernel and a left ideal *A* of *S* such that  $H_{\mathcal{R}}(S) = n$  and  $H_{\mathcal{R}}(A) = 2n - 1$ ?

**Theorem**. Let  $n \ge 2$ . Let *S* be defined by the presentation

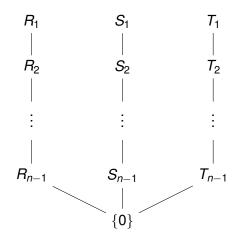
 $\langle x, y, z | xyz = x, yzy = y, zyz = z, u = 0 (u \in \{x^n, y^2, z^2, xz, yx, zx^{n-1}\})$ and let  $A = S^1\{x, y\}$ . Then  $H_{\mathcal{R}}(S) = n$  and  $H_{\mathcal{R}}(A) = 2n - 1$ .

$$S = \left(\bigcup_{i=1}^{n-1} (R_i \cup S_i \cup T_i)\right) \cup \{0\},\$$
$$R_i = \{x^i, x^i y\}, \ S_1 = \{y, yz\}, \ S_j = yzR_{j-1}, T_1 = \{z, zy\}, \ T_j = zR_{j-1}.$$

 $A = S \setminus \{yz, z\}.$ 

A (1) > A (2) > A (2) > A

## Poset of $\mathcal{R}$ -classes of S



イロト イヨト イヨト イヨト

æ

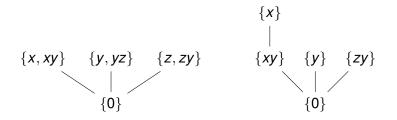


Figure: The poset of  $\mathcal{R}_S$ -classes (left), and the poset of  $\mathcal{R}_A$ -classes (right).

# Right ideal: 2n-1 bound

For each  $n \in \mathbb{N}$ , does there exist a semigroup *S* and a right ideal *A* of *S* such that  $H_{\mathcal{R}}(S) = n$  and  $H_{\mathcal{R}}(A) = 2n - 1$ ?

Let *S* be a semigroup and let *I* be a non-empty set. The *Brandt* extension of *S* by *I*, denoted by  $\mathcal{B}(S, I)$ , is the semigroup with universe  $(I \times S \times I) \cup \{0\}$  and multiplication given by 0x = x0 = 0 and

$$(i, s, j)(k, t, l) = egin{cases} (i, st, l) & ext{if } j = k \ 0 & ext{otherwise.} \end{cases}$$

**Theorem**. Let  $n \ge 2$ . Let *S* be a semigroup with a right ideal *A* of *S* such that  $H_{\mathcal{R}}(S) = n - 1$  and  $H_{\mathcal{R}}(A) = 2(n - 1) - 1$ . Let *I* be any set with  $|I| \ge 2$ , and let  $T = \mathcal{B}(S, I)$ . Fix  $1 \in I$  and let

$$B = (1, a, 1)T^{1} = (\{1\} \times A \times I) \cup \{0\}.$$

Then  $H_{\mathcal{R}}(T) = n$  and  $H_{\mathcal{R}}(B) = 2n - 1$ .

イロト 不得 トイヨト イヨト

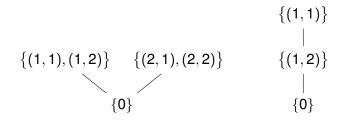


Figure: The poset of  $\mathcal{R}$ -classes of the 5-element Brandt semigroup *S* (left), and the poset of the  $\mathcal{R}$ -classes of the principal right ideal  $A = (1, 1)S^1$  (right).

# Thanks for listening