The groups case

Semilattices

Finite commutative semigroups

Further questions

Countable subdirect powers of finite commutative semigroups

Ashley Clayton (joint work with Nik Ruškuc)

25th March 2022

(with kind support from CEMAT Ciencias.ID, ULisboa)

Ashley Clayton (joint work with Nik Ruškuc)

Countable subdirect powers of finite commutative semigroups

The groups case

Semilattices

Finite commutative semigroups

Introduction to subdirect products

Definition (subdirect product)

A subdirect product of two semigroups S and T is a subsemigroup U of the direct product $S\times T$ for which the projection maps

 $\pi_S: U \to S, \, (s,t) \mapsto s, \\ \pi_T: U \to T, \, (s,t) \mapsto t,$

onto S and T are surjections.

Ashley Clayton (joint work with Nik Ruškuc)

Ashley Clayton (joint work with Nik Ruškuc) Countable subdirect powers of finite commutative semigroups

Examples of subdirect products

 $\star\,$ The direct product $S\times T$ is a subdirect product of semigroups S and T.

Semilattices

- \star Let F be the group with presentation

$$\langle x, y \mid [xy^{-1}, x^{-1}yx] = [xy^{-1}, x^{-2}yx^2] = 1 \rangle$$
.

Then $\langle (x, y^{-1}), (y, x), (x^{-1}, x^{-1}), (y^{-1}, y) \rangle$ is a subdirect product of F with itself, which is not equal to $F \times F$ or Δ_F .

The groups case

Finite commutative semigroups

Finite commutative semigroups Subdirect powers The groups case Further auestions 0000

Subdirect powers

We can equally define subdirect products of more than two semigroups, and indeed on a countably infinite number of semigroups by viewing the Cartesian product as a set of countably infinite tuples in the following way;

$$\prod_{i\in\mathbb{N}}S_i=\{(s_1,s_2,s_3\ldots):s_i\in S_i \text{ for } i\in\mathbb{N}\}.$$

If the sets S_i are all equal to the same set S, we will instead refer to the above as the *Cartesian power*. denoted

$$S^{\mathbb{N}} = \{(s_1, s_2, s_3, \dots) : (\forall i \in \mathbb{N}) (s_i \in S)\}$$

Countable subdirect powers of finite commutative semigroups

A direct power of a semigroup S is a semigroup $S^{\mathbb{N}},$ with componentwise multiplication

$$(s_1, s_2, s_3 \dots)(t_1, t_2, t_3 \dots) = (s_1 t_1, s_2 t_2, s_3 t_3, \dots)$$

A subdirect power of a semigroup S is a subsemigroup U of $S^{\mathbb{N}}$ for which the projection maps onto each component are surjections.

Note: As $S^{\mathbb{N}}$ might have uncountably many elements in it, I will only be focusing on those U that have countably many elements.

Subdirect powers

The groups case

Further auestions

The groups case

Semilattices

Finite commutative semigroups

Subdirect powers of finite groups

Theorem - Hickin, Plotkin (1981)

A finitely generated non-abelian group G has uncountably many subdirect powers (which are groups) up to isomorphism.

Theorem - McKenzie (1982)

A non-abelian group G has 2^{κ} non-isomorphic subdirect powers of cardinality κ , for every infinite cardinal $\kappa \geq |G|$.

If ${\cal G}$ is finite abelian, it will have countably many subdirect powers up to isomorphism.

The groups case $0 \bullet 0$

Semilattices

Finite commutative semigroups

Subdirect powers of finite groups

Theorem

A finite group G has countably many subdirect powers up to isomorphism if and only if G is abelian.

We'd like to work towards analogous results for subdirect powers of finite semigroups, that look like

Theorem(s)

A finite semigroup S has countably many non-isomorphic subdirect powers if and only if S satisfies *fascinating semigroup properties $_{\star}$

The groups case

Semilattices

Finite commutative semigroups

Further questions

Subdirect powers of finite semigroups

For this talk, we will concentrate on finite **commutative** semigroups.

Definition

A finite commutative semigroup S will be called *countable type* if it has only countably many subdirect powers up to isomorphism.

Otherwise, it will be called *uncountable type* if it has uncountably many such.

Firstly, the trivial semigroup of course is countable type, because $\{1\}^{\mathbb{N}} = \{(1, 1, \dots)\} \cong \{1\}.$

The commutative semigroups of order $2\ {\rm up}$ to isomorphism are

- $\star~\mathbb{Z}_2$ countable type, abelian group;
- \star O_2 countable type, as any subdirect power of O_2 is a zero semigroup, and any bijection between two is an isomorphism.
- * $U_1 = \{0, 1\}$, the two element semilattice...we will see is uncountable type.

Further auestions

Subdirect powers

Semilattices

Finite commutative semigroups

isomorphic as semilattices.

The groups case

Semilattices and orderings

Subdirect powers

 \star Any semilattice can be viewed as an ordered set with the ordering

 $s \leq t \Leftrightarrow st = s$.

* Moreover, any *linearly* ordered set (L, \leq) can be viewed as a semilattice by defining the multiplication on L to be

 $l_1 \wedge l_2 = \min\{l_1, l_2\}.$ * Two ordered sets are order isomorphic if and only if they are

Subdirect powers The groups case Semilattices Finite commutative semigroups Further questions of the case for U_1

 $U_1^{\mathbb{N}}$ is a semilattice, and can be considered as an ordered set via

 $(u_1, u_2, \dots) \leq (v_1, v_2, \dots) \Leftrightarrow (\forall i \in \mathbb{N}) (u_i \leq v_i).$

Theorem - Cantor

 $\mathbb Q$ (as a linearly ordered set) contains uncountably many linear suborders up to order isomorphism.

Strategy to find type of U_1 :

- \star Find an order isomorphic copy of ${\mathbb Q}$ in $U_1^{\mathbb N}$;
- ★ This implies uncountably many subsemilattices of $U_1^{\mathbb{N}}$ (u.t.i);
- * Make each of these a subdirect power.

The groups case

Semilattices

Finite commutative semigroups

The case for U_1

A quick side definition:

Definition

For a finite tuple $s = (s_1, s_2, \ldots, s_n) \in S^n$, we will denote by \overline{s} the countably infinite tuple

$$\overline{s} = (s_1, s_2, \dots, s_n, s_1, s_2, \dots, s_n, s_1, \dots) \in S^{\mathbb{N}}.$$

An element t of $S^{\mathbb{N}}$ is said to be *recurring* if $t = \overline{s}$ for some finite tuple in S^n , for some n.

Similarly, a subset of $S^{\mathbb{N}}$ is said to be recurring if all of its elements are recurring.

The groups case

Semilattices

Finite commutative semigroups

The case for U_1

Lemma

For two recurring elements $s, t \in U_1^{\mathbb{N}}$ with $s \leq t$, there exists a recurring $u \in U_1^{\mathbb{N}}$ with $u \neq s$, $u \neq t$, but $s \leq u \leq t$.

Corollary

 $U_1^{\mathbb{N}}$ contains an order isomorphic copy of $\mathbb{Q},$ consisting of recurring elements .

Ashley Clayton (joint work with Nik Ruškuc) Countable subdirect powers of finite commutative semigroups Semilattices

Finite commutative semigroups

The case for U_1

Lemma

 $U_1^{\mathbb{N}}$ contains uncountably many semilattices consisting of recurring elements, up to isomorphism.

A subdirect power can be constructed from each one by adding in $\overline{1}$ and $\overline{0}$, and any two non-isomorphic semilattices will give non-isomorphic subdirect powers with this construction.

This shows that U_1 is of uncountable type.

Theorem

Any non-trivial semilattice Y is of uncountable type.

Ashley Clayton (joint work with Nik Ruškuc)

University of St Andrews

Countable subdirect powers of finite commutative semigroups

Semilattices \Rightarrow Semigroups with E(S) > 1

For finite commutative semigroups S with E(S) > 1:

- \star Such semigroups S are unions of "Archimedean components", which form a semilattice.
- $\star\,$ If E(S)>1 , this semilattice is non-trivial.
- \star Make uncountably many subdirect powers of the semilattice, then "inflate" these to subdirect powers of S (making tuple component replacements)

Theore<u>m</u>

Subdirect powers

Any finite commutative semigroup S wih E(S)>1 is of $\ensuremath{\mathsf{uncountable}}$ type.

Ashley Clayton (joint work with Nik Ruškuc) Countable subdirect powers of finite commutative semigroups

Further auestions

Semigroups with a unique idempotent

That just leaves semigroups with a unique idempotent to consider.

Lemma

Let S be a finite commutative semigroup with a unique idempotent. Then S is either a group, or an ideal extension of a group by a k-nilpotent semigroup.

The case where S is a group has been dealt with. So it remains to consider ideal extensions of groups by k-nilpotent semigroups.

The groups case

Semilattices

Finite commutative semigroups

Semigroups with a unique idempotent

Theorem

Finite commutative k-nilpotent semigroups are of uncountable type for $k \geq 3$.

Corollary

Ideal extensions of non-trivial groups by k-nilpotent semigroups for $k \ge 2$ are of uncountable type.

Theorem (C, Ruškuc, 2021)

A finite commutative semigroup S is of countable type if and only if S is either a group, or a zero semigroup.

Ashley Clayton (joint work with Nik Ruškuc) Countable subdirect powers of finite commutative semigroups

The groups case

Semilattices

Finite commutative semigroups

Further questions

Further questions and results

What are the types of non-commutative completely simple semigroups? What about finite semigroups in general? Other algebras?

Theorem (Ruškuc, Witt, 2021)

Let $A = (A, \mathcal{F})$ be a finite unary algebra. The number of non-isomorphic subdirect powers of A is countable if and only if every operation in F is either a bijection or a constant mapping.

Thank you for listening!