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The intuition / motivation

Card shuffles are well-studied in combinatorics, probability,
representation theory, statistics, &c.

Credit: Johnny Blood Photography

There are also applications in theoretical computer science.

These are best understood via (inverse) semigroup theory.
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Why Computer Science?

One example: Race Conditions

“A parent process spawns several child processes,
each of which competes for the parent’s resources.
These requests must be dealt with in order, one at a
time. The outcome varies depending on the order in
which these are processed”

This is the motivation. However, today’s talk is about the
semigroup theory. Any applications are side-effects!
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How to shuffle two (possibly infinite) decks of cards

The Riffle Shuffle

Cards from Deck A and Deck B are merged
into a single stack.

At each step, a single card is taken from the bottom
of either A or B, and placed on top of the stack.

Some important conventions:

The ordering of cards is preserved.

Every card from each deck ends up in the stack.
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Modeling Riffle Shuffles

We model a deck of a cards by the well-ordered set

r0,aq “ tn P N : n ă au

(We allow for a “ 8 in this definition, giving r0,8q “ N).

A pair of decks is modeled by the disjoint union

r0,aq Z r0,bq “ r0,aq ˆ t0u Y r0,bq ˆ t1u

equipped with the induced partial order

px , iq ď py , jq iff i “ j and x ď y

A riffle shuffle is then an order-preserving bijection:

φ : r0,aq Z r0,bq Ñ r0,a` bq
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The infinitary setting

Every riffle shuffle of two infinite decks uniquely determines & is
determined by a point of the Cantor set C.

Formally, one-sided countably infinite strings over t0,1u, or
equivalently, C “ SetpN, t0,1uq.

Computational motivation

Infinite shuffles model potentially non-terminating processes.
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The correspondence:

Given a shuffle of two infinite decks

φ : r0,8q Z r0,8q Ñ r0,8q

we define the corresponding Cantor point pφ P C by

pφpnq “

$

&

%

0 n “ φpx ,0q for some x P N

1 n “ φpx ,1q for some x P N

Operationally: pφ is an instruction

At the nth step, take the next card from:
The first deck, when pφpnq “ 0
The second deck, when pφpnq “ 1
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An illustrative example

The perfect riffle shuffle:

Cards are alternately taken from each deck

corresponds to the alternating Cantor point apnq “ n pmod 2q.

a “ 0101010101 . . .

Not all Cantor points determine shuffles:

We require a Cantor point c P C to satisfy:

8
ÿ

j“0

cpjq “ 8 “
8
ÿ

j“0

1´ cpjq

For the condition, “every card is played at some point”.
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An inverse semigroup approach ...
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Some notation ...

We will be mixing order theory & partiality.

By analogy with Kleene equality

In a poset we write f paq À gpbq for

“f paq ď gpbq provided both f paq and gpbq are defined”.

A partial injection f : pP,ďq Ñ pQ,ďq is

monotone (mono.) when a ď b ñ f paq À f pbq,

anti-monotone (anti) when a ď b ñ f pbq À f paq.
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Monos, antis. and composition
Notation:

Denote the monotone partial injections from P to Q by monopP,Qq,

and the anti-monotone partial injections from P to Q by antipP,Qq.

Given partial injections:

m P monopP,Qq and n P monopQ,Rq

a P antipP,Qq and b P antipQ,Rq

then ba,nm P monopP,Rq and na,bm P antipP,Rq.

Composing monotone & anti-monotone partial injections

mono. anti.
mono. mono. anti.

anti. anti. mono.
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A word of warning!

Monotone partial injections form categories / monoids

— these are not generally inverse categories / monoids.

A simple counterexample:

Consider the successor function

succ P monoppN,“q, pN,ďqq

This is monotone, but its generalised inverse certainly is not!
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A simple and relevant setting:

Denote the set of monotone partial injections on N by

monopN,Nq ď pInjpN,Nq

This set is closed under composition and generalised inverse

and so forms an inverse monoid.
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Some intuition ...

Think of monotone partial injections on N as ‘planar diagrams’.

Monotonicity as planarity for partial injections on N

non-planar planar
...

...
...

...
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mm

1 1
mm

1 1
qq0 0oo 0 0

non-monotone monotone

Planarity is a big deal in many areas of C.S.
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Why planarity?

1 The quantum Jones polynomial algorithm
(Aharanov, Jones, Landau)

A QM algorithm for computing Jones polynomials at e
2kπi

5

Classically, a (presumably) P# problem.
Based on the Temperley-Lieb algebra
“Knot theory without crossings” – L. Kaufmann.

2 Lambek pregroups (From categorical linguistics)

Becoming used Natural Language Processing
Diagrams determined by planarity & acyclicity.

3 Complexity theory (Planarity provides bounds to complexity).

Matchgates and classical simulation of quantum circuits
– R. Jozsa, A. Miyake
Restricting swap gates allows for efficient classical
simulation of QM circuits.

4 . . .
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First ... some simple theory!
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Characterising monotone partial injections on N

Graphically, or otherwise, the following is straightforward:

Every f P monopN,Nq is uniquely determined by its initial & final
idempotents.

planar
...

...
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1 1
0 0

monotone

f´1f and ff´1 are partial identities on N.

peter.hines@york.ac.uk Shuffles in inverse semigroup theory



Characterising monotone partial injections on N

Graphically, or otherwise, the following is straightforward:

Every f P monopN,Nq is uniquely determined by its initial & final
idempotents on the well-ordered set N.

planar
...

...
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qq5 5

4 4oo
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2 2
mm

1 1
qq0 0

monotone

f´1f and ff´1 are partial identities on N.
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Idempotents as Cantor points

Indicator functions for subsets of N are points of the Cantor set.

Abusing notation slightly: given e2 “ e “ 1E P monopN,Nq,

we write Inde : N Ñ t0,1u, or Inde P C.

A trivial observation:

For a monotone partial injection f P monopN,Nq,

8
ÿ

n“0

indff ´1pnq “
8
ÿ

n“0

indf ´1f pnq P NY t8u
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A few simple definitions

A pair of Cantor points pd , cq P C ˆ C is balanced when

8
ÿ

j“0

dpjq “
8
ÿ

j“0

cpjq P NY t8u

We denote the set of balanced Cantor pairs by B Ď C ˆ C.

There is a 1 : 1 correspondence B ” monopN,Nq.
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Giving this explicitly:

Balanced Cantor pairs ” monotone partial injections

ð Given f P monopN,Nq, the balanced pair is:

pIndff ´1 , Indf ´1f q P B

ñ Given pt , sq P B, define mpt ,sq P monopN,Nq by

mpt ,sqpnq “

$

’

&

’

%

K spnq “ 0

minxPN

!

řx
j“0 tpjq “

řn
j“0 spjq

)

spnq “ 1
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An illustration:

A balanced pair of Cantor points:

t “ 1001110 , s “ 0110101 . . .

n “ 0 1 2 3 4 5 6 . . .

spnq “ 0 1 1 0 1 0 1 . . .

tpnq “ 1 0 0 1 1 1 0 . . .
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An illustration:

A balanced pair of Cantor points:

t “ 1001110 , s “ 0110101 . . .

n “ 0 1 2 3 4 5 6 . . .

spnq “ 0 1 1 0 1 0 1 . . .
ř

jďn spjq “ 0 1 2 2 3 3 4 . . .

ř

jďn tpjq “ 1 1 1 2 3 4 4 . . .

tpnq “ 1 0 0 1 1 1 0 . . .
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A monoid operation on balanced pairs?

There exists some composition operation ¨ : BˆBÑ B
such that pB, ¨q – monopN,Nq.

What does this look like?
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Normal forms (I)

A monotone partial injection is reducing when

ff´1 “ 1r0,xq for some x P NY t8u

Dually, it is expanding when

ff´1f “ 1r0,xq for some x P NY t8u

An illustrative example:

Expanding Reducing
...

...
...

...

6 6 6 6

uu

5 5 5 5
4 4 4 4

ss
3 3

kk

3 3
2 2

kk

2 2
qq1 1

kk

1 1
qq0 0oo 0 0
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Cantor points as reducing / expanding arrows

Reducing (resp. expanding) arrows are uniquely determined by

their initial (resp. final) idempotents.

Given c P C, define Redc P MonopN,Nq by

Redcpnq “

$

&

%

K n “ 0

řn
j“0 cpnq ´ 1 n “ 1

Dually, define Expc P MonopN,Nq by

Expc “ Red´1
c
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Normal forms (II)

Given arbitrary f ‰ 0 P monopN,Nq,

then the balanced pair pt , sq “ pIndff ´1 , Indf ´1f q P B

is the unique balanced pair satisfying

f “ ExptReds

(The only non-trivial point is uniqueness, which follows

since pt , sq is required to be balanced).
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By considering normal forms (or directly)

Given pv ,uq, pt , sq P B, define a composition by:

pv ,uq ¨ pt , sq “
"

p0,0q tpnqupnq “ 0 @n P N
px ,wq otherwise

where wpnq “ spnq.upjq.tpjq P t0,1u,

j “ minjPN

#

j
ÿ

α“0

tpαq “
n

ÿ

α“0

spαq

+

and similarly, xpnq “ vpnq.upkq.tpkq P t0,1u,

k “ minkPN

#

k
ÿ

α“0

upαq “
n

ÿ

α“0

vpαq

+

The generalised inverse is immediate: pt , sq´1 “ ps.tq.

This givespB, ¨q – monopN,Nq as required.
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Duals and self-encodings

Recall the complement / dual operation on the Cantor set:

cKpnq “ cpnq ` 1 pmod 2q @ c P C

(e.g. c “ 0100101 . . . has complement cK “ 1011010 . . .).

A key definition

An element pb,aq P B is complemented when pbK,aKq P B,

and is dual-inverse when pb,aq´1 “ pbK,aKq.
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Duals, inverses, and shuffles

Fairly simply, pb,aq P B is dual-inverse iff

b “ aK and
8
ÿ

n“0

apnq “ 8 “

8
ÿ

n“0

1´ apnq

There is then a bijective correspondence between dual-inverse
arrows of B, and riffle shuffles of two infinite decks of cards.

These are both determined by Cantor points a P C satisfying

8
ÿ

n“0

apnq “ 8 “

8
ÿ

n“0

1´ apnq

We call these dual-balanced Cantor points.
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From D.-B. Cantor points to Young Tableaux
There is an correspondence between

1 D.-B. Cantor points,

2 Shuffles of infinite decks of cards,

3 p8,8q Young tableaux.

c “ 1 0 1 0 1 0 1 1 0 0 . . . P C

cpnq “ 0 1 3 5 8 9 . . .
cpnq “ 1 0 2 4 6 7 . . .

The obvious question:

What about standard Young tableaux?

This is where we start to need the inverse semigroup theory.
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D.-B. Cantor points as inverse monoids

Proposition: There is a 1:1 correspondence between:
Dual-balanced Cantor points,
Effective representations of the 2-generator polycyclic
monoid within monopN,Nq.

Recall – the polycyclic monoid P2

Two generators, tp,qu
Relations:

pq´1 “ 0 “ q´1p and pp´1 “ 1 “ qq´1

Useful fact: polycyclic monoids are congruence-free.
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Monotone representations of P2

Let c P C be dual-balanced. Looking at normal forms,

ExpcRedcK “ pc, cKq and pcK, cq “ ExpcKRedc

By construction, RedcExpc “ 1N “ RedcKExpcK .

By definition, of p qK : C Ñ C,

cpnq “ 0 ðñ cKpnq “ 1

and so
RedcExpcK “ 0N “ RedcKExpc

The assignment p ÞÑ Redc , q Ñ RedcK gives an effective monotone
representation of P2.

— all effective monotone representations arise in this way.
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As always ... an example

For the alternating Cantor point, or perfect riffle shuffle,

apnq “ n pmod 2q or a “ 010101010101 . . .

we derive the representation of P2 corresponding to the Cantor
pairing:

p´1pxq “ 2x and q´1pxq “ 2x ` 1
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On to standard Young tableaux

In standard Young tableaux, the cells are well-ordered

both horizontally and vertically.

x a
y b

x ď

ď

a
ď

b ď y

Horizonal ordering corresponds to monotonicity.

What about the vertical ordering?

peter.hines@york.ac.uk Shuffles in inverse semigroup theory



Some standard(?) semigroup theory

A (binary) ballot sequence is an element w P t0,1u˚ where,
for every prefix u of w ,

#1s in u ď #0s in u

Denote the set of all finite ballot sequences by Ballot
— this forms a submonoid of t0,1u˚.

By contradiction: Consider v ,w P Ballot such that vw R Ballot .
Then there exists some prefix u of vw satisfying #0s in u ă #1s in u.
As v P Ballot , u is not a prefix of v , so u “ vl , for some prefix l of w .
However, #0s in v ě #1s in v . Therefore, #1s in l ě #0s in l ,
contradicting the assumption that w P Ballot .

peter.hines@york.ac.uk Shuffles in inverse semigroup theory



A deceptively simple monoid

Ballot sequences are well-studied in combinatorics – but also
make for interesting monoids!

Proposition The monoid of binary ballot sequences is not
finitely generated.

By contradiction: Assume a finite generating set G for
Ballot ď t0,1u˚. As G is finite, the longest contiguous string of 1s in
any member of G is bounded by some finite K P N. No composite of
members of G can account for the ballot sequence 0K`11K`1.
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From the finite to the infinite:

A Cantor point c P C is ballot when every prefix is a member of
the Ballot monoid.

N
ÿ

j“0

cpjq ď

N
ÿ

j“0

cKpjq @ N P N

Denote the ballot Cantor points by S Ď C.

Question:

How do such Cantor points behave under the point-wise partial
order:

a ď b iff apnq ď bpnq @n P N
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The ballot Scott domain

Key properties:

There is no top element & they are not closed under joins

pc _ dqpnq “ maxtcpnq,dpnqu.

They are closed under the meet, pc ^ dqpnq “ cpnqdpnq

There is a bottom element Kpnq “ 0, for all n P N.

The supremum of every chain c0 ď c1 ď c2 ď . . . is also in B

– chain-completeness ñ directed completeness, assuming
the axiom of choice (Iwamura’s Lemma).

There is a notion of finite support / compactness: c P B is

“compact” iff
ř8

j“0 cpjq ă 8, and every element is the

supremum of a chain of such elements.
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Scott Domains in Theoretical Computer Science

Scott Domains ...

Introduced by Dana Scott (early 1970s) to model pure
untyped λ calculus

— and hence computational universality.

Also used for semantics of functional programming
languages, due to the existence of solutions
of arbitrary fixed-point equations.

This particular Scott domain is

a subset of Cantor space.

We can draw a picture.
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The ballot Cantor points
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Combining two properties:

A dual-balanced ballot Cantor point c P C satisfies:
ř8

j“0 cpjq “
ř8

j“0 cKpjq

řN
j“0 cpjq ď

řN
j“0 cKpjq.

There is a 1:1 correspondence:

DBB Cantor points ” Standard p8,8q Young tableaux

These are given by:

Removing the ‘compact’ points from the ballot Scott domain.
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The motivation

As card-shuffling:

The only way we can see: . . . x

. . . y z
with z ď x is when

“More cards have been laid from Deck B than from Deck A”

As DBB Cantor points are dual-balanced, they uniquely determine

representations of P2, as monotone partial injections on N.

Call these standard monotone representations.
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Some computer science motivation

Recall the motivation for studying Shuffles, from race
conditions.

Operations from Process A push data onto a stack.

Operations from Process B pop data off a stack.

The Ballot condition prevents us from
trying to read data from an empty stack.
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Fun & games with polycyclic monoids

A very standard result N. & P. (1970)

There exists an embedding of P8 into P2.

Recall:

The infinite-generator polycyclic monoid P8 has generating

set tpjujPN, with relations pjp´1
k “

$

&

%

1 j “ k

0 j ‰ k

The embedding is given by

pj ÞÑ pqj , p´1
j ÞÑ q´jp´1

Straightforward to check that the required relations are
satisfied!
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Polycyclic monoids as bijections

A slightly lesser-known result PH & MVL ( ... a while back)

Representations of P8 within pInjpN,Nq correspond to
injections

Nˆ N ãÑ N

which are bijections when the representation is effective

A very simple construction

For a given representation, we define

Ψpx , yq “ p´1
x pyq @px , yq P Nˆ N
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A worked example:

Let’s do this for the standard monotone representation

determined by the alternating Cantor point a P C.

p´1pnq “ 2n and q´1pnq “ 2n ` 1

Expanding out, we get

Ψapx , yq “ q´xp´1pyq “ 2x`1y ` 2x ´ 1

A (Hilbert-hotel style) bijection from Nˆ N to N.
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The infinite perfect shuffle

View this as ‘shuffling countably infinitely many decks of cards’.

y “ 0 1 2 3 4 5 . . .

x
“

0 0 2 4 6 8 10 . . .
1 1 5 9 13 17 21 . . .
2 3 11 19 27 35 43 . . .
3 7 23 39 55 71 87 . . .
4 15 47 79 111 143 175 . . .
5 31 94 159 223 287 351 . . .
...

...
...

...
...

...
...

. . .
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A few observations:

Simple observations

This table contains every natural number.

Both rows and columns appear to be well-ordered

— an p8,8,8, . . .q standard Young tableau?

There seems to be some ‘underlying fractal structure’ ...

More practically — how easy is it to perform this shuffle?
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Deep fractal structure ??
On the nth step, we play from Deck x :

¨ ¨ ¨ Deck4 Deck3 Deck2 Deck1 Deck0

n “ 1 ‚

n “ 2 ‚

n “ 3 ‚

n “ 4 ‚

n “ 5 ‚

n “ 6 ‚

n “ 7 ‚

n “ 8 ‚

n “ 9 ‚

n “ 10 ‚

n “ 11 ‚

n “ 12 ‚

n “ 13 ‚

n “ 14 ‚

n “ 15 ‚

n “ 16 ‚
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This looks kind of familiar!

¨ ¨ ¨ 24 23 22 21 20

n “ 1 1
n “ 2 1 0
n “ 3 1 1
n “ 4 1 0 0
n “ 5 1 0 1
n “ 6 1 1 0
n “ 7 1 1 1
n “ 8 1 0 0 0
n “ 9 1 0 0 1

n “ 10 1 0 1 0
n “ 11 1 0 1 1
n “ 12 1 1 0 0
n “ 13 1 1 0 1
n “ 14 1 1 1 0
n “ 15 1 1 1 1
n “ 16 1 0 0 0 0
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Performing the perfect infinite riffle

A very simple rule

1 Count in binary ...

2 Which bit has changed from 0 to 1?

3 Play a card from that deck!
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The standard Young property

It is straightforward that rows and columns are well-ordered:

k m

l

k “ Ψapx , yq for some
px , yq P Nˆ N.

l “ 2k ` 1 ą k

m “ k ` 2y`1 ą k .
They also contain all natural numbers.

Claim These properties follow generally from:

1 The fact that representations of P2 are monotone
(since they are derived from DB Cantor points).

2 The ballot property on these Cantor points.
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A quick outline

Let c P C be a dual-balanced ballot Cantor point. This determines

an effective monotone representation P2
c

ãÑ pInjpN,Nq which

corresponds to an p8,8q Young tableau:

p´1p0q p´1p1q p´1p2q p´1p3q p´1p4q . . .

q´1p0q q´1p1q q´1p2q q´1p3q q´1p4q . . .

By the ballot property, p´1pnq ď q´1pnq, so this is standard.
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A quick outline (cont.)

By the same properties, q´k pnq ă q´pk`1qpnq, so the following table is
has well-ordered rows and columns:

p´1p0q p´1p1q p´1p2q p´1p3q p´1p4q . . .

q´1p´1p0q q´1p´1p1q q´1p´1p2q q´1p´1p3q q´1p´1p4q . . .

q´2p´1p0q q´2p´1p1q q´2p´1p2q q´2p´1p3q q´2p´1p4q . . .

q´3p´1p0q q´3p´1p1q q´3p´1p2q q´3p´1p3q q´3p´1p4q . . .
...

...
...

...
...

. . .

Finally, as q´1 is monotone and q´1pxq ą p´1pxq, we deduce that

8
č

j“0

q´jpNq “ H

and so the embedding of P8 is effective.
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From the infinite to the finite

Every DBB Cantor point determines an p8,8,8, . . .q standard Young
tableau. These can be written as sequences of finite standard Young
tableaux.

For the alternating Cantor point:

n=0 n=1 n=2 n=3 n=4 n=5

0 0

1

0 2

1

0 2

1

3

0 2 4

1

3

0 2 4

1 5

3

. . . just a complicated way of counting in binary!
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From Sets to Spaces

Adding in Topology & Category Theory
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The clopen topology

The Cantor space C is the Cantor set C together with the
clopen topology.
This is generated by the clopen basis

twC : w P t0,1u˚u

Basic open covers

These are determined by some R P t0,1u˚ where
ď

rPR

rC “ C

A minimal cover is a basic open cover satisfying

rCX r 1C “ H @r ‰ r 1 P R
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From open covers to prefix codes

Given some R Ď t0,1u˚, then

RC is a minimal open cover
iff

R is a maximal prefix code.

A relevant fact ...
The set of maximal prefix codes is closed under the induced
subset composition.

We will concern ourselves with finite covers.
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A picture is worth a thousand words ...

There is a well-established bijection between
(Finite) prefix codes over t0,1u˚

(Finite) complete binary trees.
A “ t00,01,1u , B “ t0,10,11u , C “ t00,01,10,11u

A

00 01 1

B

0 10 11

C

00 01 10 11
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An uninteresting(?) groupoid

Define the groupoid P as follows:

Objects All finite maximal prefix codes over t0,1u˚

Arrows Bijections of prefix codes that are monotone w.r.t.
the lexicographic ordering.

This is fairly uninteresting:

There is precisely one arrow between any two prefix codes of
the same size.
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What is interesting about W?

The groupoid P has two distinct categorical tensors.

Given finite, maximal prefix codes R,S Ď t0,1u˚,

The Multiplicative tensor R b S “ trsurPR,sPS

The additive tensor RlS “ t0u ˆ R Y t1u ˆ S

On arrows ...

The tensor on arrows is determined by uniqueness(!)
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As binary trees ...

BlC

00
010 011 100 101 110 111

A b B

000
0010 0011

010
0110 0111

10
110 111
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A categorical reminder ...

A key structure from the foundations of category theory
(MacLane’s Theorem):

MacLane’s pW , l q

Objects All finite complete binary trees.

Arrows Unique arrow between any two trees of the same
rank.

Tensor Paste two trees together at their root!

We have an equivalence of categories pP, l q ” pW, l q.

Question: What about the ‘other tensor’ & categorical distributivity?
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Back to Cantor space

Each arrow of MacLane’s W uniquely determines a
homeomorphism of Cantor space:

Given φ : R Ñ S, a monotone bijection of finite maximal
prefix codes,
define T pφq : CÑ C by:

T pφqprwq “ φprqw @ r P R, w P C

T pφq is:
Injective, by construction.
Globally defined, as RC is an open cover.
Surjective, as SC is an open cover.
Continuous — basic open sets map to basic open sets.
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What the F. is this group?

T p q is a faithful functor from a groupoid to a group.

Its image is closed under composition and inverses, and
contains the identity.

The obvious question:

What is this group of homeomorphisms of C ?
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Some explicit calculations ...

Within the groupoid W (equivalently, P)

Let X0 be the unique arrow

0
10 11

ñ

00 01
1

Let X1 be the unique arrow

0
10

110 111

ñ

0

100 101
11

Let X2 be the unique arrow

0
0

10
110 111

ñ
0

0

100 101
11

Let X3 be . . .
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Mapping things down to Cantor space ...

Let us then define xj “ T pXjq : CÑ C for all n P N

Simple direct calculation gives:

x´1
i xjxi “ xj`1 @i ă j P N

We have the generators and relations of Thompson’s group F

Appealing to the fact that F has no non-abelian quotients,

The image of T p q contains a copy of F .

With a little more work ...

The image of T p q is precisely Thompson’s F .
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More questions than answers

There is a close connection between:

1 Minimal basic open covers of Cantor space

2 MacLane’s W & the foundations of category theory

3 Thompson’s group F .

By varying assumptions (finiteness, monotonicity, maximality, &c.)
we recover many interesting & familiar structures!

What structures do we recover when we look at

minimal basic open covers of:

1 The Ballot Scott domain?

2 Dual-Balanced Ballot Cantor points?
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