Congruences of $EndF_n(G)$

$\mathsf{FFB} + \mathsf{NR}$

St Andrews

2019 January 10th

FFB + NR (St Andrews)

Congruences of End $F_n(G)$

2019 January 10th 1 / 24

- 2

A D N A B N A B N A B N

Outline of this talk:

- Definitions and notation.
- Some structure of End $F_n(G)$.
- Congruences of rank one.
- Congruences of higher rank.

3

Let X be a non-empty set, G be a group such that $G \curvearrowright X$. We say X is a left G-act, and write $_GX$.

Definition (Free act)

A generating set U of $_GX$ is a *basis* if every $x \in _GX$ can be uniquely presented in the form x = gu for some $u \in U$, $g \in G$. That is:

$$x = g_1 u_1 = g_2 u_2 \iff g_1 = g_2$$
 and $u_1 = u_2$

If an act $_{G}X$ has a basis U, then it is called the *free rank* |U| *act*, and we write $_{G}X = F_{|U|}(G)$ to denote this.

Free rank *n* G-act

Let G be a group, and let

$$F_n(G) = \bigcup_{i=1}^n Gx_i$$

be the rank n free left G-act.

 $F_n(G)$ consists of the set of formal symbols $\{gx_i : g \in G, 1 \le i \le n\}$. For any $g, h \in G$ and $1 \le i, j \le n$:

$$gx_i = hx_j \iff g = h$$
 and $i = j$

The action of G is given by $g(hx_i) = (gh)x_i$.

Endomorphisms of $F_n(G)$

Definition (Act Endomorphism)

Let G act on a set A. Then $\phi : A \longrightarrow A$ is an *act endomorphism* if

$$(ga)\phi = g(a\phi) \quad \forall g \in G, a \in A$$

Write $\operatorname{End} F_n(G)$ for the collection of all endomorphisms of $F_n(G)$, with composition of maps as its binary operation.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Each $\alpha \in \text{End}F_n(G)$ is determined completely by its act on the free generators $\{x_i : i \in [1, n]\}$, therefore we can write:

$$\alpha = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ \omega_1^{\alpha} x_{1\bar{\alpha}} & \omega_2^{\alpha} x_{2\bar{\alpha}} & \dots & \omega_n^{\alpha} x_{n\bar{\alpha}} \end{pmatrix}$$

for a map $\bar{\alpha} \in T_n$ and an element $\alpha_G = (\omega_1^{\alpha}, \omega_2^{\alpha}, \dots, \omega_n^{\alpha}) \in G^n$.

Fact

The function

$$\psi: \operatorname{End} F_n(G) \longrightarrow G \wr T_n$$
$$\alpha \mapsto (\alpha_G, \bar{\alpha})$$

is an isomorphism.

< □ > < □ > < □ > < □ > < □ > < □ >

Image, Rank, Kernel

Image And Rank

Let $\alpha \in \operatorname{End} F_n(G)$, then:

$$\operatorname{im}(\alpha) = \bigcup_{i \in \operatorname{im}(\bar{\alpha})} G_{x_i}, \quad \operatorname{rank}(\alpha) = \operatorname{rank}(\bar{\alpha})$$

Write D_m for the \mathcal{D} -class of elements of rank m.

Kernel

Let $\alpha, \beta \in D_r$. Then ker $(\alpha) = \text{ker}(\beta)$ if and only if ker $(\bar{\alpha}) = \text{ker}(\bar{\beta}) = \{B_1, \dots, B_r\}$ and for any $j \in \{1, \dots, r\}$ there exists $q_{j,\alpha,\beta} \in G$ such that for any $k \in B_j$, we have $\omega_k^{\alpha} q_{j,\alpha,\beta} = \omega_k^{\beta}$

イロト 不得 トイヨト イヨト 二日

Example

Consider $\alpha, \beta, \gamma \in \text{End } F_3(C_2)$, $C_2 = \langle a \rangle$.

$$\alpha = \begin{pmatrix} x_1 & x_2 & x_3 \\ ax_1 & x_1 & x_2 \end{pmatrix} \quad \beta = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & ax_1 & x_2 \end{pmatrix}$$

$$q_{1,lpha,eta}=q_{2,lpha,eta}=a, \quad q_{3,lpha,eta}=1$$

Hence ker(α) = ker(β). But:

$$\gamma = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & x_1 & x_2 \end{pmatrix}$$
 $q_{1,\alpha,\gamma} = a \neq 1 = q_{2,\alpha,\gamma}, \quad q_{3,\alpha,\gamma} = 1$
Hence ker $(\alpha) \neq \text{ker}(\gamma)$.

- 2

A D N A B N A B N A B N

Structure of $\operatorname{End} F_n(G)$

Green's Relations on $EndF_n(G)$

For any $\alpha, \beta \in \operatorname{End} F_n(G)$:

- $\alpha \mathcal{L}\beta \iff \operatorname{im}(\alpha) = \operatorname{im}(\beta),$
- $\alpha \mathcal{R}\beta \iff \ker(\alpha) = \ker(\beta)$,

•
$$\alpha \mathcal{D}\beta \iff \operatorname{rank}(\alpha) = \operatorname{rank}(\beta)$$
,

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition (Rank of a congruence)

Let ρ be a congruence of End $F_n(G)$, then the rank of ρ , written rank(ρ) is:

 $\operatorname{rank}(\rho) = \max \{ \operatorname{rank}(f) \mid \exists g \neq f \text{ such that } (g, f) \in \rho \}$

Remark

Let H_m be an \mathcal{H} -group class of D_m , then:

 $H_m \cong G \wr \operatorname{Sym}(m)$

In particular,

$$H_1 \cong G \wr \operatorname{Sym}(1) \cong G$$

< □ > < □ > < □ > < □ > < □ > < □ >

Let S and T be semigroups, $f: S \to T$ be a homomorphism, and ρ be a congruence on T. Then

$$f^{-1}(\rho) = \left\{ (\alpha, \beta) \in S^2 \mid (\alpha f, \beta f) \in \rho \right\}$$

is a congruence on S.

Fact

```
The map f : \operatorname{End} F_n(G) \to T_n defined by
```

 $\alpha \mapsto \bar{\alpha}$

is a homomorphism.

FFB + NR (St Andrews)

イロト 不得下 イヨト イヨト

For the next few slides, we restrict our attention to congruences of rank one. That is, congruences whose non-trivial classes contain only elements of D_1 .

3

Congruences in \mathcal{H}

Fact

Let $\alpha, \beta \in \operatorname{End} F_n(G)$ be such that $(\alpha, \beta) \in D_1 \times D_1$, and $\alpha \mathcal{H}\beta$. Let N be the normal subgroup of G generated by $q_{\alpha,\beta}$. Then:

$$(\alpha,\beta)^{\sharp} = \{(\gamma,\delta) \in D_1 \times D_1 \mid \gamma \mathcal{H}\delta, \ q_{\delta,\gamma} \in N\} \cup \Delta$$

Congruences in $\mathcal{R} \setminus \mathcal{L}$

Fact

Let $\alpha, \beta \in \operatorname{End} F_n(G)$ be such that $(\alpha, \beta) \in D_1 \times D_1$, and $(\alpha, \beta) \in \mathcal{R} \setminus \mathcal{L}$. Then:

$$(lpha,eta)^{\sharp}=\{(\gamma,\delta)\in D_1 imes D_1\ |\ \gamma\mathcal{R}\delta\}\cup\Delta$$

< □ > < 同 > < 回 > < 回 > < 回 >

Congruences in $\mathcal{L} \setminus \mathcal{R}$

Fact

Let $\alpha, \beta \in \text{End } F_n(G)$ be elements of rank one such that $(\alpha, \beta) \in \mathcal{L} \setminus \mathcal{R}$. Let M be the normal subgroup of G generated by $\{(q_{1,\alpha,\beta})^{-1}q_{1,\alpha,\beta}, \dots, (q_{1,\alpha,\beta})^{-1}q_{n,\alpha,\beta}\}$, and N be the normal subgroup of G generated by $\{q_{1,\alpha,\beta}, \dots, q_{n,\alpha,\beta}\}$. Then: $(\alpha, \beta)^{\sharp} = \{(\gamma, \delta) \in D_1^2 \mid \gamma \mathcal{L} \delta, \ q_{k,\gamma,\delta} \in Mt \text{ for some } t \in N, k \in \{1, \dots, n\}\}$ $\cup \Delta$. Example

Let $C_4 = \langle a \rangle$, be the cyclic group of order four. Consider End $F_3(C_4)$. Let $\alpha, \beta \in \text{End } F_3(C_4)$ be:

$$\alpha = \begin{pmatrix} x_1 & x_2 & x_3 \\ ax_1 & a^2x_1 & a^3x_1 \end{pmatrix},$$
$$\beta = \begin{pmatrix} x_1 & x_2 & x_3 \\ a^2x_1 & ax_1 & a^2x_1 \end{pmatrix}.$$

Then:

$$q_{k,lpha,eta} = egin{cases} a & ext{if } k = 1 \ a^3 & ext{if } k \in \{2,3\} \ , \ (q_{1,lpha,eta})^{-1}q_{k,lpha,eta} = egin{cases} 1 & ext{if } k = 1 \ a^2 & ext{if } k \in \{2,3\} \ . \end{cases}$$

We then have that

$$\langle \bigcup_{k=1}^{n} \mathscr{C}((q_{j,\alpha,\beta})^{-1}q_{k,\alpha,\beta}) \rangle = \langle a^{2} \rangle = C_{2} \neq C_{4} = \langle a \rangle = \langle \bigcup_{k=1}^{n} \mathscr{C}(q_{k,\alpha,\beta}) \rangle$$

Congruences not in $\mathcal{R} \cup \mathcal{L}$

Fact

Let $\alpha, \beta \in \operatorname{End} F_n(G)$ be such that $\operatorname{rank}(\alpha) = \operatorname{rank}(\beta) = 1$, $(\alpha, \beta) \notin \mathcal{L} \cup \mathcal{R}$. Define $\gamma \in \operatorname{End} F_n(G)$ by:

$$x_k\gamma = \omega_k^\beta x_{1\bar{\alpha}}$$

for $k \in \{1, \ldots, n\}$. Then:

$$(\alpha,\beta)^{\sharp} = (\alpha,\gamma)^{\sharp} \vee (\gamma,\beta)^{\sharp}$$

- 3

(4) (日本)

What about congruences of higher rank?

2

< □ > < □ > < □ > < □ > < □ >

Definition

Let ρ be a congruence on $S = \text{End } F_n(G)$. We say that ρ is of:

- Δ -type if $\rho \subseteq \{(\alpha, \beta) \in S^2 \mid \bar{\alpha} = \bar{\beta}\};$
- **2** Ideal type if $D_1^2 \subseteq \rho$;

Omplementary type if there exist α, β ∈ S such that ᾱ ≠ β̄ and (α, β) ∈ ρ, but D₁² ⊈ ρ.

If ρ is of ideal type, then it has a unique ideal congruence class $\mathcal{I}_{\rho} = \mathcal{I}_{r}$, and it contains all elements of rank at most r.

Let ρ be a congruence on End $F_n(G)$ different from the equality congruence. Let $(\alpha, \beta) \in \rho \setminus \Delta$, and let $gx_m \in F_n(G)$ be such that $(gx_m)\alpha \neq (gx_m)\beta$. Let N be the normal subgroup of G generated by $q_{m,\alpha,\beta}$. Then:

$$\{(\gamma,\delta)\in D_1^2 \mid \gamma\mathcal{H}\delta, \ q_{\gamma,\delta}\in N\}\subseteq \rho.$$

Furthermore, if $m\bar{\alpha} \neq m\bar{\beta}$, then:

$$\{(\gamma,\delta)\in D_1^2 \mid \gamma\mathcal{R}\delta\}\subseteq \rho$$
.

- 4 回 ト 4 三 ト 4 三 ト

Let ρ be a congruence on End $F_n(G)$. Suppose $\alpha, \beta \in \text{End } F_n(G)$ are such that rank $(\beta) < \text{rank}(\alpha) = k$, and $(\alpha, \beta) \in \rho$. Then ρ is of ideal type, and $\mathcal{I}_k \subseteq \mathcal{I}_{\rho}$.

Corollary

Let $\alpha, \beta \in \text{End} F_n(G)$ be such that $\operatorname{rank}(\beta) < \operatorname{rank}(\alpha) = k$. Then $(\alpha, \beta)^{\sharp} = \operatorname{Rees}(k)$.

Let ρ be a congruence of ideal type. If $\alpha, \beta \in \text{End} F_n(G)$ are such that $(\alpha, \beta) \in \rho$ and $\alpha \notin \mathcal{I}_{\rho}$, then $\alpha \mathcal{L}\beta$ and $\ker(\bar{\alpha}) = \ker(\bar{\beta})$.

Corollary

Let ρ be a congruence of complementary type. If $\alpha, \beta \in \text{End } F_n(G)$ are such that $(\alpha, \beta) \in \rho$ and $\alpha \notin D_1$, then $\alpha \mathcal{L}\beta$ and $\text{ker}(\bar{\alpha}) = \text{ker}(\bar{\beta})$.

< □ > < □ > < □ > < □ > < □ > < □ >

Let ρ be a congruence of ideal type, $\alpha \in \text{End } F_n(G)$ an element of rank k, $k \geq 2$, such that there exists $\beta \in \text{End } F_n(G)$, $\beta \neq \alpha$, such that $(\alpha, \beta) \in \rho$. Then $\mathcal{I}_{k-1} \subseteq \mathcal{I}_{\rho}$.

Corollary

Let ρ be a congruence of complementary type. If $\alpha, \beta \in \text{End } F_n(G)$ are such that $(\alpha, \beta) \in \rho$ and $\alpha \notin D_1 \cup D_2$, then $\bar{\alpha} = \bar{\beta}$.

Corollary

Let ρ be a congruence of ideal type, and $\mathcal{I}_{\rho} = \mathcal{I}_k$. If $\alpha, \beta \in \text{End } F_n(G)$ are such that both are of rank greater than k + 1 and they are related by ρ , then $\alpha = \beta$.

イロト イポト イヨト イヨト

Corollary

Let τ be a congruence on End $F_n(G)$ of complementary type, then

 $\tau = \rho \vee \sigma$,

where ρ is a congruence of rank one or two, and σ is a congruence of Δ -type.

< □ > < □ > < □ > < □ > < □ > < □ >