Congruences of End $F_{n}(G)$

FFB + NR

St Andrews

2019 January $10^{\text {th }}$

Outline of this talk:

- Definitions and notation.
- Some structure of End $F_{n}(G)$.
- Congruences of rank one.
- Congruences of higher rank.

Let X be a non-empty set, G be a group such that $G \curvearrowright X$. We say X is a left G-act, and write ${ }_{G} X$.

Definition (Free act)

A generating set U of ${ }_{G} X$ is a basis if every $x \in{ }_{G} X$ can be uniquely presented in the form $x=g u$ for some $u \in U, g \in G$. That is:

$$
x=g_{1} u_{1}=g_{2} u_{2} \Longleftrightarrow g_{1}=g_{2} \quad \text { and } \quad u_{1}=u_{2}
$$

If an act ${ }_{G} X$ has a basis U, then it is called the free rank $|U|$ act, and we write ${ }_{G} X=F_{|U|}(G)$ to denote this.

Free rank n G-act

Let G be a group, and let

$$
F_{n}(G)=\bigcup_{i=1}^{n} G x_{i}
$$

be the rank n free left G-act.
$F_{n}(G)$ consists of the set of formal symbols $\left\{g x_{i}: g \in G, 1 \leq i \leq n\right\}$. For any $g, h \in G$ and $1 \leq i, j \leq n$:

$$
g x_{i}=h x_{j} \Longleftrightarrow g=h \quad \text { and } \quad i=j
$$

The action of G is given by $g\left(h x_{i}\right)=(g h) x_{i}$.

Endomorphisms of $F_{n}(G)$

Definition (Act Endomorphism)

Let G act on a set A. Then $\phi: A \longrightarrow A$ is an act endomorphism if

$$
(g a) \phi=g(a \phi) \quad \forall g \in G, a \in A
$$

Write $\operatorname{End} F_{n}(G)$ for the collection of all endomorphisms of $F_{n}(G)$, with composition of maps as its binary operation.

Each $\alpha \in \operatorname{End} F_{n}(G)$ is determined completely by its act on the free generators $\left\{x_{i}: i \in[1, n]\right\}$, therefore we can write:

$$
\alpha=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
\omega_{1}^{\alpha} x_{1 \bar{\alpha}} & \omega_{2}^{\alpha} x_{2 \bar{\alpha}} & \ldots & \omega_{n}^{\alpha} x_{n \bar{\alpha}}
\end{array}\right)
$$

for a map $\bar{\alpha} \in T_{n}$ and an element $\alpha_{G}=\left(\omega_{1}^{\alpha}, \omega_{2}^{\alpha}, \ldots, \omega_{n}^{\alpha}\right) \in G^{n}$.

Fact

The function

$$
\begin{aligned}
\psi: \operatorname{End} F_{n}(G) & \longrightarrow G \imath T_{n} \\
\alpha & \mapsto\left(\alpha_{G}, \bar{\alpha}\right)
\end{aligned}
$$

is an isomorphism.

Image, Rank, Kernel

Image And Rank

Let $\alpha \in \operatorname{End} F_{n}(G)$, then:

$$
\operatorname{im}(\alpha)=\bigcup_{i \in \operatorname{im}(\bar{\alpha})} G x_{i}, \quad \operatorname{rank}(\alpha)=\operatorname{rank}(\bar{\alpha})
$$

Write D_{m} for the \mathcal{D}-class of elements of rank m.

Kernel

Let $\alpha, \beta \in D_{r}$. Then $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$ if and only if
$\operatorname{ker}(\bar{\alpha})=\operatorname{ker}(\bar{\beta})=\left\{B_{1}, \ldots, B_{r}\right\}$ and for any $j \in\{1, \ldots, r\}$ there exists $q_{j, \alpha, \beta} \in G$ such that for any $k \in B_{j}$, we have $\omega_{k}^{\alpha} q_{j, \alpha, \beta}=\omega_{k}^{\beta}$

Example

Consider $\alpha, \beta, \gamma \in \operatorname{End} F_{3}\left(C_{2}\right), C_{2}=\langle a\rangle$.

$$
\begin{gathered}
\alpha=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
a x_{1} & x_{1} & x_{2}
\end{array}\right) \quad \beta=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
x_{1} & a x_{1} & x_{2}
\end{array}\right) \\
q_{1, \alpha, \beta}=q_{2, \alpha, \beta}=a, \quad q_{3, \alpha, \beta}=1
\end{gathered}
$$

Hence $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$. But:

$$
\begin{gathered}
\gamma=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
x_{1} & x_{1} & x_{2}
\end{array}\right) \\
q_{1, \alpha, \gamma}=a \neq 1=q_{2, \alpha, \gamma}, \quad q_{3, \alpha, \gamma}=1
\end{gathered}
$$

Hence $\operatorname{ker}(\alpha) \neq \operatorname{ker}(\gamma)$.

Structure of End $F_{n}(G)$

Green's Relations on End $F_{n}(G)$
For any $\alpha, \beta \in \operatorname{End} F_{n}(G)$:

- $\alpha \mathcal{L} \beta \Longleftrightarrow \operatorname{im}(\alpha)=\operatorname{im}(\beta)$,
- $\alpha \mathcal{R} \beta \Longleftrightarrow \operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$,
- $\alpha \mathcal{D} \beta \Longleftrightarrow \operatorname{rank}(\alpha)=\operatorname{rank}(\beta)$,

Definition (Rank of a congruence)
Let ρ be a congruence of $\operatorname{End} F_{n}(G)$, then the rank of ρ, written $\operatorname{rank}(\rho)$ is:

$$
\operatorname{rank}(\rho)=\max \{\operatorname{rank}(f) \mid \exists g \neq f \text { such that }(g, f) \in \rho\}
$$

Remark

Let H_{m} be an \mathcal{H}-group class of D_{m}, then:

$$
H_{m} \cong G \imath \operatorname{Sym}(m)
$$

In particular,

$$
H_{1} \cong G \imath \operatorname{Sym}(1) \cong G
$$

Fact

Let S and T be semigroups, $f: S \rightarrow T$ be a homomorphism, and ρ be a congruence on T. Then

$$
f^{-1}(\rho)=\left\{(\alpha, \beta) \in S^{2} \mid(\alpha f, \beta f) \in \rho\right\}
$$

is a congruence on S.

Fact

The map $f:$ End $F_{n}(G) \rightarrow T_{n}$ defined by

$$
\alpha \mapsto \bar{\alpha}
$$

is a homomorphism.

For the next few slides, we restrict our attention to congruences of rank one. That is, congruences whose non-trivial classes contain only elements of D_{1}.

Congruences in \mathcal{H}

Fact

Let $\alpha, \beta \in \operatorname{End} F_{n}(G)$ be such that $(\alpha, \beta) \in D_{1} \times D_{1}$, and $\alpha \mathcal{H} \beta$. Let N be the normal subgroup of G generated by $q_{\alpha, \beta}$. Then:

$$
(\alpha, \beta)^{\sharp}=\left\{(\gamma, \delta) \in D_{1} \times D_{1} \mid \gamma \mathcal{H} \delta, q_{\delta, \gamma} \in N\right\} \cup \Delta
$$

Congruences in $\mathcal{R} \backslash \mathcal{L}$

Fact

Let $\alpha, \beta \in \operatorname{End} F_{n}(G)$ be such that $(\alpha, \beta) \in D_{1} \times D_{1}$, and $(\alpha, \beta) \in \mathcal{R} \backslash \mathcal{L}$. Then:

$$
(\alpha, \beta)^{\sharp}=\left\{(\gamma, \delta) \in D_{1} \times D_{1} \mid \gamma \mathcal{R} \delta\right\} \cup \Delta
$$

Congruences in $\mathcal{L} \backslash \mathcal{R}$

Fact

Let $\alpha, \beta \in$ End $F_{n}(G)$ be elements of rank one such that $(\alpha, \beta) \in \mathcal{L} \backslash \mathcal{R}$.
Let M be the normal subgroup of G generated by $\left\{\left(q_{1, \alpha, \beta}\right)^{-1} q_{1, \alpha, \beta}, \ldots,\left(q_{1, \alpha, \beta}\right)^{-1} q_{n, \alpha, \beta}\right\}$, and N be the normal subgroup of G generated by $\left\{q_{1, \alpha, \beta}, \ldots, q_{n, \alpha, \beta}\right\}$. Then:
$(\alpha, \beta)^{\sharp}=\left\{(\gamma, \delta) \in D_{1}^{2} \mid \gamma \mathcal{L} \delta, q_{k, \gamma, \delta} \in M t\right.$ for some $\left.t \in N, k \in\{1, \ldots, n\}\right\}$ $\cup \Delta$.

Example

Let $C_{4}=\langle a\rangle$, be the cyclic group of order four. Consider End $F_{3}\left(C_{4}\right)$. Let $\alpha, \beta \in \operatorname{End} F_{3}\left(C_{4}\right)$ be:

$$
\begin{aligned}
\alpha & =\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
a x_{1} & a^{2} x_{1} & a^{3} x_{1}
\end{array}\right), \\
\beta & =\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
a^{2} x_{1} & a x_{1} & a^{2} x_{1}
\end{array}\right) .
\end{aligned}
$$

Then:

$$
\begin{aligned}
q_{k, \alpha, \beta} & =\left\{\begin{array}{ll}
a & \text { if } k=1 \\
a^{3} & \text { if } k \in\{2,3\}
\end{array},\right. \\
\left(q_{1, \alpha, \beta}\right)^{-1} q_{k, \alpha, \beta} & =\left\{\begin{array}{ll}
1 & \text { if } k=1 \\
a^{2} & \text { if } k \in\{2,3\}
\end{array} .\right.
\end{aligned}
$$

We then have that

$$
\left\langle\bigcup_{k=1}^{n} \mathscr{C}\left(\left(q_{j, \alpha, \beta}\right)^{-1} q_{k, \alpha, \beta}\right)\right\rangle=\left\langle a^{2}\right\rangle=C_{2} \neq C_{4}=\langle a\rangle=\left\langle\bigcup_{k=1}^{n} \mathscr{C}\left(q_{k, \alpha, \beta}\right)\right\rangle
$$

Congruences not in $\mathcal{R} \cup \mathcal{L}$

Fact

Let $\alpha, \beta \in \operatorname{End} F_{n}(G)$ be such that $\operatorname{rank}(\alpha)=\operatorname{rank}(\beta)=1$, $(\alpha, \beta) \notin \mathcal{L} \cup \mathcal{R}$. Define $\gamma \in \operatorname{End} F_{n}(G)$ by:

$$
x_{k} \gamma=\omega_{k}^{\beta} x_{1 \bar{\alpha}}
$$

for $k \in\{1, \ldots, n\}$. Then:

$$
(\alpha, \beta)^{\sharp}=(\alpha, \gamma)^{\sharp} \vee(\gamma, \beta)^{\sharp}
$$

What about congruences of higher rank?

Definition

Let ρ be a congruence on $S=$ End $F_{n}(G)$. We say that ρ is of:
(1) Δ-type if $\rho \subseteq\left\{(\alpha, \beta) \in S^{2} \mid \bar{\alpha}=\bar{\beta}\right\}$;
(2) Ideal type if $D_{1}^{2} \subseteq \rho$;
(3) Complementary type if there exist $\alpha, \beta \in S$ such that $\bar{\alpha} \neq \bar{\beta}$ and $(\alpha, \beta) \in \rho$, but $D_{1}^{2} \nsubseteq \rho$.

If ρ is of ideal type, then it has a unique ideal congruence class $\mathcal{I}_{\rho}=\mathcal{I}_{r}$, and it contains all elements of rank at most r.

Fact

Let ρ be a congruence on End $F_{n}(G)$ different from the equality congruence. Let $(\alpha, \beta) \in \rho \backslash \Delta$, and let $g x_{m} \in F_{n}(G)$ be such that $\left(g x_{m}\right) \alpha \neq\left(g x_{m}\right) \beta$. Let N be the normal subgroup of G generated by $q_{m, \alpha, \beta}$. Then:

$$
\left\{(\gamma, \delta) \in D_{1}^{2} \mid \gamma \mathcal{H} \delta, q_{\gamma, \delta} \in N\right\} \subseteq \rho .
$$

Furthermore, if $m \bar{\alpha} \neq m \bar{\beta}$, then:

$$
\left\{(\gamma, \delta) \in D_{1}^{2} \mid \gamma \mathcal{R} \delta\right\} \subseteq \rho .
$$

Fact

Let ρ be a congruence on End $F_{n}(G)$. Suppose $\alpha, \beta \in \operatorname{End} F_{n}(G)$ are such that $\operatorname{rank}(\beta)<\operatorname{rank}(\alpha)=k$, and $(\alpha, \beta) \in \rho$. Then ρ is of ideal type, and $\mathcal{I}_{k} \subseteq \mathcal{I}_{\rho}$.

Corollary

Let $\alpha, \beta \in \operatorname{End} F_{n}(G)$ be such that $\operatorname{rank}(\beta)<\operatorname{rank}(\alpha)=k$. Then $(\alpha, \beta)^{\sharp}=\operatorname{Rees}(k)$.

Fact

Let ρ be a congruence of ideal type. If $\alpha, \beta \in \operatorname{End} F_{n}(G)$ are such that $(\alpha, \beta) \in \rho$ and $\alpha \notin \mathcal{I}_{\rho}$, then $\alpha \mathcal{L} \beta$ and $\operatorname{ker}(\bar{\alpha})=\operatorname{ker}(\bar{\beta})$.

Corollary

Let ρ be a congruence of complementary type. If $\alpha, \beta \in \operatorname{End} F_{n}(G)$ are such that $(\alpha, \beta) \in \rho$ and $\alpha \notin D_{1}$, then $\alpha \mathcal{L} \beta$ and $\operatorname{ker}(\bar{\alpha})=\operatorname{ker}(\bar{\beta})$.

Fact

Let ρ be a congruence of ideal type, $\alpha \in \operatorname{End} F_{n}(G)$ an element of rank k, $k \geq 2$, such that there exists $\beta \in$ End $F_{n}(G), \beta \neq \alpha$, such that $(\alpha, \beta) \in \rho$. Then $\mathcal{I}_{k-1} \subseteq \mathcal{I}_{\rho}$.

Corollary

Let ρ be a congruence of complementary type. If $\alpha, \beta \in$ End $F_{n}(G)$ are such that $(\alpha, \beta) \in \rho$ and $\alpha \notin D_{1} \cup D_{2}$, then $\bar{\alpha}=\bar{\beta}$.

Corollary

Let ρ be a congruence of ideal type, and $\mathcal{I}_{\rho}=\mathcal{I}_{k}$. If $\alpha, \beta \in$ End $F_{n}(G)$ are such that both are of rank greater than $k+1$ and they are related by ρ, then $\alpha=\beta$.

Corollary

Let τ be a congruence on End $F_{n}(G)$ of complementary type, then

$$
\tau=\rho \vee \sigma
$$

where ρ is a congruence of rank one or two, and σ is a congruence of Δ-type.

