The global dimension of the algebra of the monoid of all partial functions on an n-set

Itamar Stein
Shamoon College of Engineering
28th NBSAN, St Andrews
June 15, 2018

Monoid algebras

- M - finite monoid.
- $\mathbb{C} M$ - monoid algebra.

$$
\mathbb{C} M=\left\{\sum \alpha_{i} m_{i} \mid \alpha_{i} \in \mathbb{C} \quad m_{i} \in M\right\}
$$

- $\mathbb{C} M$ is usually not a semisimple algebra.

Question

Given an interesting monoid M, try to find properties \backslash invariants of $\mathbb{C} M$

Monoid algebras

- Interesting choices of M :
- Transformation monoid: $\mathcal{T}_{n}, \mathcal{P} \mathcal{T}_{n}, \mathcal{I} \mathcal{S}_{n}$, order-related monoids, etc.
- Classes: \mathcal{J}-trivial monoids, \mathcal{R}-trivial monoids, left regular bands, DO monoids.
- Invariants:
- Character table, Jacobson radical, Projective \Injective \backslash Simple modules, Cartan matrix, Quiver, Quiver presentation, Global dimension.

Goal

For our talk:

- $M=\mathcal{P} \mathcal{T}_{n}$. The monoid of all partial functions on $\{1, \ldots, n\}$.
- Invariant $=$ The global dimension.

Goal

Find the global dimension of $\mathbb{C} \mathcal{P} \mathcal{T}_{n}$.

Known results on global dimension of monoid algebras

- Steinberg (2016):gl. $\operatorname{Dim}\left(\mathbb{C} \mathcal{T}_{n}\right)=n-1$.
- Margolis, Saliola, Steinberg (2015): Certain results on the global dimension of (algebras of) left regular bands.

Outline

- Preliminaries on Rep Theory of $\mathcal{P} \mathcal{T}_{n}$.
- Cartan Matrix
- Quiver
- Global dimension
- The monoid $\mathcal{P} \mathcal{T}_{n}$.
- Regular.
- The \mathcal{J} order is linear.
- The maximal subgroups are S_{k} where $0 \leq k \leq n$.
- The structure matrix ("Rees sandwich matrix") of J_{k} is left invertible over $\mathbb{C} S_{k}$.

Munn-Ponizovsky

Theorem (Munn-Ponizovsky)

Let M be a finite monoid. There is a one-to-one correspondence between simple modules of M and simple modules of its maximal subgroups.

- The maximal subgroups of $\mathcal{P} \mathcal{T}_{n}$ are S_{k} for $0 \leq k \leq n$
- Irreducible representations of S_{n} can be parameterized by partitions $\alpha \vdash n$, or equivalently, by Young diagrams with n-boxes:

- Irreducible representations of $\mathcal{P} \mathcal{T}_{n}$ can be parameterized by partitions $\alpha \vdash k$ for $0 \leq k \leq n$, or equivalently, by Young diagrams.

Rep. Theory of $\mathcal{P} \mathcal{T}_{n}$ using a Category

Definition

Let D be a finite category. The category algebra $\mathbb{C} D$ consists of linear combination of morphisms

$$
\left\{\sum \alpha_{i} m_{i} \mid \alpha_{i} \in \mathbb{C} \quad m_{i} \in M C^{1}\right\}
$$

with multiplication being linear extension of

$$
m_{1} \cdot m_{2}= \begin{cases}m_{1} m_{2} & \text { if defined } \\ 0 & \text { otherwise }\end{cases}
$$

Rep. Theory of $\mathcal{P} \mathcal{T}_{n}$ using E_{n}

Definition

Let E_{n} be the category whose objects are the subsets of $\{1 \ldots n\}$, and whose morphisms are all the total onto functions between subsets. (There is a one-to-one correspondence between morphisms and elements of $\mathcal{P} \mathcal{T}_{n}$).

Remark

For every object X, its endomorphisms form the group $S_{|X|}$.

Rep. Theory of $\mathcal{P} \mathcal{T}_{n}$ using E_{n}

E_{2} :

Rep. Theory of $\mathcal{P} \mathcal{T}_{n}$ using E_{n}

Theorem (IS 2016)
 $\mathbb{C} \mathcal{P} \mathcal{T}_{n} \cong \mathbb{C} E_{n}$.

Remark

Similar result holds for many other finite semigroups.

- Lattices (Solomon 1967),
- Inverse semigroups (Steinberg 2006),
- Ample semigroups (Guo, Chen 2012)
- Ehresmann+left \right restriction (IS 2017),
- P-Ehresmann+ left \backslash right P-restriction (Wang 2017)

Outline

- Preliminaries on Rep Theory of $\mathcal{P} \mathcal{T}_{n}$
- Cartan Matrix
- Quiver
- Global dimension

Projective modules

Definition

Let A be be a finite dimensional algebra over \mathbb{C} and let $\operatorname{Hom}_{A}(M,-): A-\operatorname{Mod} \rightarrow \mathbf{A b}$ be the usual hom functor. An A-module P is called projective if $\operatorname{Hom}_{A}(P,-)$ is an exact functor.

Projective modules

- $\operatorname{Ext}^{n}(P, N)=0$ for every projective P.
- There is a one-to-one corrspondence between simple modules and indecomposable projective modules.
- Therefore: Indecomposable Projective modules of $\mathbb{C} \mathcal{P} \mathcal{T}_{n}$ are also parameterized by Young diagrams $\alpha \vdash k$ for $0 \leq k \leq n$,

Cartan matrix - Definition

Definition

Let $S(1), \ldots S(n)$ be the simple modules of A with corresponding indecomposable projective modules $P(1), \ldots, P(n)$. The cartan matrix of A is an $n \times n$ matrix whose (a, b) entry is the number of times that $S(a)$ appears as a Jordan-Hölder factor of $P(b)$.

Cartan matrix of $\mathcal{P} \mathcal{T}_{n}$

For $\mathcal{P} \mathcal{T}_{n}$ the simples \backslash projectives are indexed by Young diagrams $\alpha \vdash k$ and $\beta \vdash r$. How many times $S(\alpha)$ appears as a Jordan-Hölder factor of $P(\beta)$?

Cartan matrix of $\mathcal{P} \mathcal{T}_{n}$

Proposition (Putcha 1995)

The Cartan matrix of $\mathcal{P} \mathcal{T}_{n}$ is block lower-unitriangular.

Cartan matrix of $\mathcal{P} \mathcal{T}_{n}$

Question

What about the other elements of the matrix?

Cartan matrix

Define $E(r, k)$ to be the set of all onto total functions from $\{1, \ldots, r\}$ to $\{1, \ldots, k\}$. This is an $S_{k} \times S_{r}$ module via action $(\pi, \tau) * f=\pi f \tau^{-1}$. Given a partition $\alpha \vdash n$, denote by S^{α} the Specht module (=irreducible S_{n}-representation) corresponding to α.
The irreducible representations of $S_{k} \times S_{r}$ are $\left\{S^{\alpha} \otimes S^{\beta} \mid \alpha \vdash k, \quad \beta \vdash r\right\}$.

Proposition (IS)

The number of times that $S(\alpha)$ appears as a J-H factor in $P(\beta)$ is the number of times that $S^{\alpha} \otimes S^{\beta}$ appears as an irreducible constituent in $E(r, k)$.

Remark

Similar to other descriptions of the Cartan matrix in the literature.

Rep. Theory of S_{n}

- Let G be a group and $H \leq G$ a subgroup. Let $V(U)$ be an irreducible G-module (resp. H-module). We denote by $\operatorname{Res}_{H}^{G} V, \operatorname{Ind}_{H}^{G} U$ the usual induction and restriction functors.
- If $G=S_{n}$ and $H=S_{n-1}$ then $\operatorname{Res}_{S_{n-1}}^{S_{n}} V\left(\operatorname{Ind}_{S_{n-1}}^{S_{n}} U\right)$ is obtained by removing (resp. adding) boxes from the corrsponding diagram ("Classical" branching rules).
- If $G=S_{n}$ and $H=S_{k} \times S_{n-k}$ then $\operatorname{Ind}_{S_{k} \times S_{n-k}}^{S_{n}} U$ is described by the Littlewood-Richardson branching rule.

Cartan matrix

Proposition (IS 2016)

Explicit description of the block diagonal below the main diagonal.

Cartan matrix

Proposition (IS 2016)

Let $\alpha \vdash k$ and $\beta \vdash k+1$. The number of times that $S(\alpha)$ appears as a J-H factor in $P(\beta)$ is the number of times that S^{β} appears as an irreducible constituent in

$$
\operatorname{Ind}_{S_{k-1} \times S_{2}}^{S_{k+1}}\left(\operatorname{Res}_{S_{k-1}}^{S_{k}} S^{\alpha} \otimes \operatorname{tr}_{S_{2}}\right)
$$

which is the number of ways to obtain β from α by removing one box and adding two but not in the same column.

Cartan matrix

Proposition (IS)

Explicit description of another block sub-diagonal.

Cartan matrix

Proposition (IS)

Let $\alpha \vdash k$ and $\beta \vdash k+2$. The number of times that $S(\alpha)$ appears as a J-H factor in $P(\beta)$ is the number of times that S^{β} appears as an irreducible constituent in

$$
\operatorname{Ind}_{S_{k-1} \times S_{3}}^{S_{k+2}}\left(\operatorname{Res}_{S_{k-1}}^{S_{k}}\left(S^{\alpha}\right) \otimes \operatorname{tr}_{S_{3}}\right) \oplus \operatorname{Ind}_{S_{k-2} \times D_{4}}^{S_{k+2}} \overline{\operatorname{Res}_{S_{k-2} \times S_{2}}^{S_{k}} S^{\alpha}}
$$

Outline

- Preliminaries on Rep Theory of $\mathcal{P} \mathcal{T}_{n}$
- Cartan Matrix
- Quiver
- Global dimension

Quiver of $\mathcal{P} \mathcal{T}_{n}$

Definition

Let A be an algebra. The quiver of A is the directed graph Q defined as follows:

- Vertices - Simple modules.
- Edges - The number of edges between S_{1} to S_{2} is $\operatorname{dim} \operatorname{Ext}{ }^{1}\left(S_{1}, S_{2}\right)$.

Theorem (IS 2016)

: Computation of the Quiver of $\mathbb{C} \mathcal{P} \mathcal{T}_{n}$.

- Vertices: Young diagrams with k-boxes.
- Edges: $\sharp\{\beta \rightarrow \alpha\}=$ number of ways to obtain β from α by removing one box and adding two but not in the same column.

Quiver of $\mathbb{C} \mathcal{P} \mathcal{T}_{4}$

\emptyset

Outline

- Preliminaries on Rep Theory of $\mathcal{P} \mathcal{T}_{n}$
- Cartan Matrix
- Quiver
- Global dimension

Global dimension - definition

Definition

Let M be an A-module. A projective resolution of M is an exact sequence

$$
0 \rightarrow P_{n} \rightarrow \ldots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

where every P_{i} is projective.
$n=$ length of the projective resolution.

Definition

The projective dimension of M is the minimal length of a projective resolution of M.

```
Example
pd}(M)=0\LongleftrightarrowM\mathrm{ is projective.
```


Global dimension - definition

- $\operatorname{Ext}^{n}(M,-)$ - the n-th right derived functor of $\operatorname{Hom}(M,-)$.

```
Fact
pd(M)=min{m|Ext}\mp@subsup{}{}{m+1}(M,N)=0\mathrm{ for every N }\inA-\operatorname{Mod}
```


Global dimension - definition

Definition

The global dimension of an algebra A is

$$
\operatorname{gl} . \operatorname{Dim}(A)=\sup \{\operatorname{pd}(M) \mid M \in \mathrm{~A}-\operatorname{Mod}\}
$$

Upper bound

Theorem (Nico's Theorem)

Let M be a regular monoid and let k be the longest chain in the \mathcal{J}-order. Then gl . $\operatorname{Dim}(\mathbb{C} M) \leq 2 k$.
If all the structure matrices are left or right invertible, then $\operatorname{gl} . \operatorname{Dim}(\mathbb{C} M) \leq k$.

- For $M=\mathbb{C} \mathcal{P} \mathcal{T}_{n}$ this gives gl. $\operatorname{Dim}\left(\mathbb{C} \mathcal{P} \mathcal{T}_{n}\right) \leq n$.
- It is easy to show we can ignore the \mathcal{J} class of the zero function, so actually $\operatorname{gl} . \operatorname{Dim}\left(\mathbb{C} \mathcal{P} \mathcal{T}_{n}\right) \leq n-1$.
- Equivalent: The global dimension is bounded abve by the longest path in the quiver.

Main Theorem

Theorem

$\operatorname{gl} . \operatorname{Dim}\left(\mathbb{C} \mathcal{P} \mathcal{T}_{n}\right)=n-1$.

- It is enough to find a module M with $\operatorname{pd}(M)=n-1$.
- It is enough to find modules M, N with $\operatorname{Ext}^{n-1}(M, N) \neq 0$.

The projective module of the "dual standard" partition

Conjecture (Walter Mazorchuk)

Consider the projective indecomposable module $P(\beta)$ for the partition $\beta=\left[2,1^{n-2}\right]$. It contains only few J-H components.

Proposition (IS)

For $n \geq 3$, the only $J-H$ components of $P(\beta)$ are the simples for $\left[2,1^{n-2}\right]$, $\left[2,1^{n-3}\right]$ and $\left[1^{n-1}\right]$. Each one with multiplicity 1.

Example $(n=4)$

The J-H components of $P(\square)$ are $S(\square), S(\square)$ and $S(\square)$.

Homological arguments for $n=4$

- Consider the short exact sequence

- By the above we know that the J-H components of Rad $P(\square)$ are $S(\square)$ and $S(\square)$.
- Other known facts:
- $S(\square$)is a projective module.
- $\operatorname{Ext}^{1}(S(\square), S(\square))=\operatorname{Ext}^{1}(S(\square), S(\square))=0$

This implies that $\operatorname{Rad} P(\square)=S(\square) \oplus S(\square)$.

Homological arguments for $n=4$

- Consider the short exact sequence

$$
0 \rightarrow S(\square) \oplus S(\square) \rightarrow P(\square) \rightarrow S(\square) \rightarrow 0
$$

- By the "long exact sequence" Theorem we have that

$$
\begin{aligned}
& \operatorname{Ext}^{k}(S(\square), S(\square)) \cong \operatorname{Ext}^{k-1}(S(\square) \oplus S(\square), S(\square)) \\
& \operatorname{Ext}^{k-1}(S(\square) \oplus S(\square), S(\square))= \\
& \quad \operatorname{Ext}^{k-1}(S(\square), S(\square)) \oplus \operatorname{Ext}^{k-1}(S(\square), S(\square))= \\
& \quad \operatorname{Ext}^{k-1}(S(\square), S(\square))
\end{aligned}
$$

Homological arguments for $n=4$

- Hence

$$
\operatorname{Ext}^{k}(S(\square), S(\square)) \cong \operatorname{Ext}^{k-1}(S(\square), S(\square))
$$

- This implies that

$$
\operatorname{pd}(S(\square))=\operatorname{pd}(S(\square))+1
$$

- This implies that

$$
\operatorname{pd}\left(S\left(\left[2,1^{n-2}\right]\right)\right)=\operatorname{pd}\left(S\left(\left[2,1^{n-2}\right]\right)\right)+1
$$

Homological arguments

- In general we prove that

$$
\operatorname{pd}\left(S\left(\left[2,1^{n-2}\right]\right)\right)=\operatorname{pd}\left(S\left(\left[2,1^{n-2}\right]\right)\right)+1
$$

- This implies that

$$
\operatorname{pd}\left(S\left(\left[2,1^{n-2}\right]\right)\right)=n-1
$$

- Therefore:

$$
\text { gl. } \operatorname{Dim}\left(\mathbb{C} \mathcal{P} \mathcal{T}_{n}\right)=n-1
$$

as required.

Thank you!

