The global dimension of the algebra of the monoid of all partial functions on an *n*-set

Itamar Stein

Shamoon College of Engineering

28th NBSAN, St Andrews June 15, 2018

- M finite monoid.
- $\mathbb{C}M$ monoid algebra.

$$\mathbb{C}M = \{\sum \alpha_i m_i \mid \alpha_i \in \mathbb{C} \quad m_i \in M\}$$

• $\mathbb{C}M$ is usually not a semisimple algebra.

Question

Given an interesting monoid M, try to find properties \invariants of $\mathbb{C}M$

- Interesting choices of *M*:
 - Transformation monoid: T_n , PT_n , IS_n , order-related monoids, etc.
 - Classes: J-trivial monoids, R-trivial monoids, left regular bands, DO monoids.
- Invariants:
 - Character table, Jacobson radical, Projective\Injective\Simple modules, Cartan matrix, Quiver, Quiver presentation, Global dimension.

For our talk:

- $M = \mathcal{PT}_n$. The monoid of all partial functions on $\{1, \ldots, n\}$.
- Invariant = The global dimension.

Goal

Find the global dimension of $\mathbb{C}\mathcal{PT}_n$.

- Steinberg (2016):gl. $Dim(\mathbb{C} \mathcal{T}_n) = n 1$.
- Margolis, Saliola, Steinberg (2015): Certain results on the global dimension of (algebras of) left regular bands.

- Preliminaries on Rep Theory of \mathcal{PT}_n .
- Cartan Matrix
- Quiver
- Global dimension

- The monoid \mathcal{PT}_n .
 - Regular.
 - The ${\mathcal J}$ order is linear.
 - The maximal subgroups are S_k where $0 \le k \le n$.
 - The structure matrix ("Rees sandwich matrix") of J_k is left invertible over $\mathbb{C}S_k$.

Theorem (Munn-Ponizovsky)

Let M be a finite monoid. There is a one-to-one correspondence between simple modules of M and simple modules of its maximal subgroups.

- The maximal subgroups of \mathcal{PT}_n are S_k for $0\leq k\leq n$
- Irreducible representations of S_n can be parameterized by partitions $\alpha \vdash n$, or equivalently, by Young diagrams with *n*-boxes:
- Irreducible representations of \mathcal{PT}_n can be parameterized by partitions $\alpha \vdash k$ for $0 \leq k \leq n$, or equivalently, by Young diagrams.

Let D be a finite category. The category algebra $\mathbb{C}D$ consists of linear combination of morphisms

$$\{\sum \alpha_i m_i \mid \alpha_i \in \mathbb{C} \quad m_i \in MC^1\}$$

with multiplication being linear extension of

$$m_1 \cdot m_2 = egin{cases} m_1 m_2 & ext{if defined} \ 0 & ext{otherwise} \end{cases}$$

Let E_n be the category whose objects are the subsets of $\{1...n\}$, and whose morphisms are all the total onto functions between subsets. (There is a one-to-one correspondence between morphisms and elements of \mathcal{PT}_n).

Remark

For every object X, its endomorphisms form the group $S_{|X|}$.

Rep. Theory of \mathcal{PT}_n using E_n

 E_2 :

Theorem (IS 2016)

 $\mathbb{C}\mathcal{PT}_n\cong\mathbb{C}E_n.$

Remark

Similar result holds for many other finite semigroups.

- Lattices (Solomon 1967),
- Inverse semigroups (Steinberg 2006),
- Ample semigroups (Guo, Chen 2012)
- Ehresmann+left\right restriction (IS 2017),
- P-Ehresmann+ left\right P-restriction (Wang 2017)

- Preliminaries on Rep Theory of \mathcal{PT}_n
- Cartan Matrix
- Quiver
- Global dimension

Let A be be a finite dimensional algebra over \mathbb{C} and let Hom_A $(M, -): A - Mod \rightarrow Ab$ be the usual hom functor. An A-module P is called *projective* if Hom_A(P, -) is an exact functor.

$$\begin{array}{c}
P\\
\downarrow \\
B \xrightarrow{} C
\end{array}$$

- $Ext^n(P, N) = 0$ for every projective P.
- There is a one-to-one corrspondence between simple modules and indecomposable projective modules.
- Therefore: Indecomposable Projective modules of C PT_n are also parameterized by Young diagrams α ⊢ k for 0 ≤ k ≤ n,.

Let $S(1), \ldots S(n)$ be the simple modules of A with corresponding indecomposable projective modules $P(1), \ldots, P(n)$. The cartan matrix of A is an $n \times n$ matrix whose (a, b) entry is the number of times that S(a)appears as a Jordan-Hölder factor of P(b). For \mathcal{PT}_n the simples\projectives are indexed by Young diagrams $\alpha \vdash k$ and $\beta \vdash r$. How many times $S(\alpha)$ appears as a Jordan-Hölder factor of $P(\beta)$?

Cartan matrix of \mathcal{PT}_n

Proposition (Putcha 1995)

The Cartan matrix of \mathcal{PT}_n is block lower-unitriangular.

Itamar Stein (SCE)

Cartan matrix of \mathcal{PT}_n

Question

What about the other elements of the matrix?

Define E(r, k) to be the set of all onto **total** functions from $\{1, \ldots, r\}$ to $\{1, \ldots, k\}$. This is an $S_k \times S_r$ module via action $(\pi, \tau) * f = \pi f \tau^{-1}$. Given a partition $\alpha \vdash n$, denote by S^{α} the Specht module (=irreducible S_n -representation) corresponding to α .

The irreducible representations of $S_k \times S_r$ are $\{S^{\alpha} \otimes S^{\beta} \mid \alpha \vdash k, \beta \vdash r\}$.

Proposition (IS)

The number of times that $S(\alpha)$ appears as a J-H factor in $P(\beta)$ is the number of times that $S^{\alpha} \otimes S^{\beta}$ appears as an irreducible constituent in E(r, k).

Remark

Similar to other descriptions of the Cartan matrix in the literature.

- Let G be a group and $H \leq G$ a subgroup. Let V(U) be an irreducible G-module (resp. H-module). We denote by $\operatorname{Res}_{H}^{G} V$, $\operatorname{Ind}_{H}^{G} U$ the usual induction and restriction functors.
- If $G = S_n$ and $H = S_{n-1}$ then $\operatorname{Res}_{S_{n-1}}^{S_n} V(\operatorname{Ind}_{S_{n-1}}^{S_n} U)$ is obtained by removing (resp. adding) boxes from the corresponding diagram ("Classical" branching rules).
- If $G = S_n$ and $H = S_k \times S_{n-k}$ then $\operatorname{Ind}_{S_k \times S_{n-k}}^{S_n} U$ is described by the Littlewood-Richardson branching rule.

Cartan matrix

Proposition (IS 2016)

Explicit description of the block diagonal below the main diagonal.

Itamar Stein (SCE)

Proposition (IS 2016)

Let $\alpha \vdash k$ and $\beta \vdash k + 1$. The number of times that $S(\alpha)$ appears as a J-H factor in $P(\beta)$ is the number of times that S^{β} appears as an irreducible constituent in

$$\mathsf{Ind}_{\mathcal{S}_{k-1}\times\mathcal{S}_2}^{\mathcal{S}_{k+1}}(\mathsf{Res}_{\mathcal{S}_{k-1}}^{\mathcal{S}_k}\,\mathcal{S}^\alpha\otimes\mathsf{tr}_{\mathcal{S}_2})$$

which is the number of ways to obtain β from α by removing one box and adding two but not in the same column.

Cartan matrix

Proposition (IS)

Explicit description of another block sub-diagonal.

Itamar Stein (SCE)

Proposition (IS)

Let $\alpha \vdash k$ and $\beta \vdash k+2$. The number of times that $S(\alpha)$ appears as a J-H factor in $P(\beta)$ is the number of times that S^{β} appears as an irreducible constituent in

$$\mathsf{Ind}_{S_{k-1}\times S_3}^{S_{k+2}}(\mathsf{Res}_{S_{k-1}}^{S_k}(S^\alpha)\otimes \mathsf{tr}_{S_3})\oplus\mathsf{Ind}_{S_{k-2}\times D_4}^{S_{k+2}}\overline{\mathsf{Res}_{S_{k-2}\times S_2}^{S_k}S^\alpha}.$$

- \bullet Preliminaries on Rep Theory of \mathcal{PT}_n
- Cartan Matrix
- Quiver
- Global dimension

Let A be an algebra. The quiver of A is the directed graph Q defined as follows:

- Vertices Simple modules.
- Edges The number of edges between S_1 to S_2 is dim $\text{Ext}^1(S_1, S_2)$.

Theorem (IS 2016)

- : Computation of the Quiver of $\mathbb{C}\,\mathcal{PT}_n.$
 - Vertices: Young diagrams with k-boxes.
 - Edges: #{β → α} = number of ways to obtain β from α by removing one box and adding two but not in the same column.

Quiver of $\mathbb{C}\,\mathcal{PT}_4$

Ø

- Preliminaries on Rep Theory of \mathcal{PT}_n
- Cartan Matrix
- Quiver
- Global dimension

Let M be an A-module. A projective resolution of M is an exact sequence

$$0 \to P_n \to \ldots \to P_1 \to P_0 \to M \to 0$$

where every P_i is projective. n =length of the projective resolution.

Definition

The projective dimension of M is the minimal length of a projective resolution of M.

Example

 $pd(M) = 0 \iff M$ is projective.

• $\operatorname{Ext}^n(M, -)$ - the *n*-th right derived functor of $\operatorname{Hom}(M, -)$.

Fact

$pd(M) = min\{m \mid Ext^{m+1}(M, N) = 0 \text{ for every } N \in A - Mod\}$

The global dimension of an algebra A is

$$gl. Dim(A) = \sup\{pd(M) \mid M \in A - Mod\}$$

Theorem (Nico's Theorem)

Let *M* be a regular monoid and let *k* be the longest chain in the \mathcal{J} -order. Then gl. $Dim(\mathbb{C}M) \leq 2k$. If all the structure matrices are left or right invertible, then gl. $Dim(\mathbb{C}M) \leq k$.

- For $M = \mathbb{C} \mathcal{PT}_n$ this gives gl. $Dim(\mathbb{C} \mathcal{PT}_n) \leq n$.
- It is easy to show we can ignore the \mathcal{J} class of the zero function, so actually gl. $\text{Dim}(\mathbb{C}\mathcal{PT}_n) \leq n-1$.
- Equivalent: The global dimension is bounded abve by the longest path in the quiver.

Theorem

gl. $\operatorname{Dim}(\mathbb{C}\mathcal{PT}_n) = n-1.$

- It is enough to find a module M with pd(M) = n 1.
- It is enough to find modules M, N with $\operatorname{Ext}^{n-1}(M, N) \neq 0$.

Conjecture (Walter Mazorchuk)

Consider the projective indecomposable module $P(\beta)$ for the partition $\beta = [2, 1^{n-2}]$. It contains only few J-H components.

Proposition (IS)

For $n \ge 3$, the only J-H components of $P(\beta)$ are the simples for $[2, 1^{n-2}]$, $[2, 1^{n-3}]$ and $[1^{n-1}]$. Each one with multiplicity 1.

Homological arguments for n=4

• Consider the short exact sequence

$$0 \to \operatorname{Rad} P(\square) \to P(\square) \to S(\square) \to 0$$

• By the above we know that the J-H components of Rad P(

Other known facts:

• S() is a projective module.

•
$$\operatorname{Ext}^1(S(\square), S(\square)) = \operatorname{Ext}^1(S(\square), S(\square)) = 0$$

This implies that $\operatorname{Rad} P(\square) = S(\square) \oplus S(\square)$

Homological arguments for n=4

• Consider the short exact sequence

$$0 \to S(\square) \oplus S(\square) \to P(\square) \to S(\square) \to 0$$

• By the "long exact sequence" Theorem we have that

$$\operatorname{Ext}^{k}(S(\square), S(\square)) \cong \operatorname{Ext}^{k-1}(S(\square) \oplus S(\square), S(\square))$$
$$\operatorname{Ext}^{k-1}(S(\square) \oplus S(\square), S(\square)) =$$
$$\operatorname{Ext}^{k-1}(S(\square), S(\square)) \oplus \operatorname{Ext}^{k-1}(S(\square), S(\square)) =$$
$$\operatorname{Ext}^{k-1}(S(\square), S(\square))$$

• This implies that

$$pd(S()) = pd(S()) + 1$$

This implies that

$$\mathsf{pd}(S([2,1^{n-2}])) = \mathsf{pd}(S([2,1^{n-2}])) + 1$$

• In general we prove that

$$pd(S([2,1^{n-2}])) = pd(S([2,1^{n-2}])) + 1$$

• This implies that

$$pd(S([2,1^{n-2}])) = n-1$$

Therefore:

gl.
$$\mathsf{Dim}(\mathbb{C}\mathcal{PT}_n) = n-1$$

as required.

Thank you!