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Representations

A representation of a semigroup S (group G) over a field k is a
homomorphism ϕ : S → End(V ) (ϕ : G→ GL(V )) for some
vector space of dimension n. n is the degree of ϕ. Write ϕs for
ϕ(s).

ϕ is null if ϕs = 0 for all s ∈ S.

Representations ϕ : S → End(V ), ψ : S → End(W ) are
equivalent if there is an isomorphism T : V →W such that
ψsT = Tϕs for all s ∈ S. Write ϕ ∼ ψ.

A subspace W of V invariant under ϕ if ϕs(w) ∈W for all
w ∈W and s ∈ S.

ϕ is irreducible if it is not null and {0} and V are the only
subspaces of V invariant under ϕ.



Representations

Given representations ϕ : S → End(V ), ψ : S → End(W ), their
direct sum is ϕ⊕ ψ : S → V ⊕W given by

(ϕ⊕ ψ)s(v, w) = (ϕs(v), ψs(w))

A representation of S is proper if it is not a direct sum with one
summand being null.

ϕ : S → End(V ) is completely reducible if

ϕ ∼ ϕ(1) ⊕ · · · ⊕ ϕ(k)

for some irreducible representations ϕ(1), . . . , ϕ(k) of S.



Representations

The semigroup algebra k[S] has as its elements finite formal
sums

∑
s∈S αss and multiplication given by

(
∑
s∈S

αss)(
∑
t∈S

βtt) =
∑
s,t∈S

αsβt(st).

If k[S] is semisimple Artinian, then every proper representation
of S is completely reducible .

Theorem
The semigroup algebra k[S] of a finite inverse semigroup S over
a field k is semisimple if and only if k has characteristic 0 or a
prime not dividing the order of any subgroup of S.



Principal factors

Let a ∈ S:
I Ja denotes the J -class of a;
I J(a) = S1aS1;
I Ja 6 Jb iff J(a) ⊆ J(b);
I I(a) = {b ∈ J(a) : Jb < Ja}.

The principal factors of S are the Rees quotients J(a)/I(a).
They are 0-simple, simple or null (all products zero).

Theorem
Let S be a semigroup satisfying the descending chain condition
for principal ideals. Suppose also that every principal factor of
S is 0-simple or simple. If every representation of every
principal factor of S over a field k is completely reducible, then
so is every representation of S over k.



Finite semigroups

Let S be a finite semigroup. S has a principal series, i.e., a
series

S = S0 ⊃ S1 ⊃ · · · ⊃ Sn ⊃ Sn+1 = ∅

where each Si is an ideal of S and the Rees factors Si/Si+1 are
principal factors.
In fact, every principal factor of S is isomorphic to one of the
Si/Si+1.

Theorem
The semigroup algebra k[S] of a finite semigroup S over a field k
is semisimple if and only if k[Si/Si+1] is semisimple for each i.



Characters

Let ϕ be a representation of a semigroup S. The character of ϕ
is the mapping χ : S → k given by χ(s) = traceϕs for all s ∈ S.

χ is irreducible if ϕ is irreducible.

The set X(S) of all characters of S forms a ring.

Theorem
Every proper representation over C of a finite inverse semigroup
is completely determined up to equivalence by its character.

Douglas described all irreducible characters of the symmetric
inverse monoid In in a 1957 paper.



What happened next?

1. McAlister extends Douglas’ results. Notable is:

Theorem
Let S be a finite semigroup, J1, . . . , Jn the regular J -classes of
S and Hi a maximal subgroup of Ji (i = 1, . . . , n). Then

X(S) ∼= X(H1)× · · · × X(Hn).

2. Rhodes/Zalcstein re-work and extend Douglas’ work on finite
semigroups, and apply to group complexity of finite semigroups.

3. Steinberg uses the inductive groupoid associated with aninverse
semigroup.
Recently, also new approach to representations of general finite
semigroups avoiding use of principal factors.

4. Application of representation theory of finite symmetric inverse
monoids. (Malandro and Rockmore).



Inverse semigroups: Structure

An inverse semigroup S is:

I bisimple if any two elements are D-related;

I 0-bisimple if it has a zero, and any two non-zero elements
are D-related;

I simple if it any two elements are J -related;

I 0-simple if it has a zero, and any two non-zero elements are
J -related.



Inverse semigroups: Structure
An ω-chain is a chain Cω = {e0, e1, . . . , en, . . . } with ei 6 ej if
and only if j 6 i.

Let A be a monoid, and α : A→ H1 be a homomorphism. Put
BR(A,α) = N×A× N. Define multiplication by

(m, a, n)(p, b, q) = (m− n+ t, aαt−nbαt−p, q − p+ t)

where t = max{n, p}.

Theorem
Let S = BR(A,α). Then

1. S is a simple monoid with identity (1, 0, 1);
2. (m, a, n)D(p, b, q) if and only if aDb;
3. (m, a, n) is idempotent if and only if m = n and a2 = a;
4. S is inverse if and only if A is inverse;
5. If S is inverse, then E(S) ∼= Cω ◦ E(A).



Inverse semigroups: Structure

Let S be a regular ω-semigroup, that is, an inverse semigroup
with E(S) ∼= Cω.

Theorem (Reilly, 1966)

S is bisimple iff S ∼= BR(G,α) for a group G and α ∈ End(G).

Theorem (1968)

S is simple iff S ∼= BR(A,α) where A is a finite chain of groups.
This result was also found by Kolchin.
An extension of the theorem gives the structure of a regular
ω-semigroup S with minimum ideal K 6= S.

Theorem (1968)

The following are equivalent:
1. S does not have a minimum ideal;
2. the idempotents of S are central;
3. S is a ω-chain of groups.



Inverse semigroups: Structure

A semilattice E is:
I uniform (0-uniform) if Ee ∼= Ef for all (non-zero) e, f ∈ E;
I subuniform (0-subuniform) if for all (non-zero) e, f ∈ E

there exists g ∈ E such that g 6 f and Ee ∼= Eg.

Theorem

1. If S is a bisimple (0-bisimple, simple, 0-simple) inverse
semigroup, then E(S) is uniform (0-uniform, subuniform,
0-subuniform).

2. If E is a uniform (0-uniform, subuniform, 0-subuniform)
semilattice, then there is a bisimple (0-bisimple, simple,
0-simple) inverse semigroup with E(S) ∼= E.



Inverse semigroups: Structure

Let S be an inverse semigroup. There is a maximum
idempotent-separating congruence µ on S; µ ⊆H and (Howie)

aµb if and only if a−1ea = b−1eb for all e ∈ E(S).

S is fundamental if µ = ι.

The fundamental (or Munn) representation of S is the
homomorphism α : S → IE(S) given by aα = αa where
eαa = a−1ea.

The Munn semigroup TE of a semilattice E is the subset of IE

consisting of all isomorphisms between principal ideals of E.



Inverse semigroups: Structure

Theorem

1. TE is an inverse subsemigroup of IE;
2. if α : S → IE(S) is the fundamental representation, then

imα is a full subsemigroup of TE(S), imα ∼= S/µ and imα
is fundamental;

3. S is fundamental iff it is isomorphic to a full inverse
subsemigroup of TE(S).

Strategy: describe inverse semigroups by regarding them as
extensions of fundamental inverse semigroups. Used by Douglas
to describe 0-bisimple inverse semigroups, and applied to get a
structure theorem for 0-bisimple (ω, I) inverse semigroups in
terms of a maximal subgroup and a semilattice. Reilly’s
structure theorem is a corollary.
Lallement and Petrich had previously determined the structure
of these semigroups using Reilly’s theorem.



Inverse semigroups: What happened next

1. McAlister extended the general results for 0-bisimple
semigroups of Douglas and Reilly to give a structure
theorem for arbitrary 0-bisimple semigroups in terms of
groups and 0-uniform semilattices.

2. Hall extends results on the fundamental representation to
orthodox semigroups by constructing the Hall semigroup, a
generalisation of the Munn semigroup.

3. Hall and Nambooripad (independently) extend further to
arbitrary regular semigroups.

4. JBF uses Munn semigroup to get fundamental
representation of ample semigroups.

5. Gould, Gomes, JBF and El Qallali explore analogues for
various classes of weakly ample semigroups and
generalisations.



Inverse semigroups: P-semigroups
Let G be group acting by order automorphisms on a partially
ordered set X and Y ⊆ X. Suppose that

1. Y is an order ideal of X, and a meet semilattice under the
induced ordering;

2. G � Y = X;
3. g � Y ∩ Y 6= ∅ for all g ∈ G.

Put P = P (G,X, Y ) = {(A, g) ∈ Y ×G : g−1 ·A ∈ Y } and
(A, g)(B, h) = (A ∧ g �B, gh)

is an E-unitary inverse semigroup; Y ∼= E(P ) and P/σ ∼= G.
(σ is the minimum group congruence. Inverse S is E-unitary if
e, ea ∈ E(S)⇒ a ∈ E(S).)

Theorem (McAlister)

1. Any inverse semigroup is an idempotent-separating
homomorphic image of an E-unitary inverse semigroup.

2. If S is E-unitary inverse, then S ∼= P (G,X, Y ) for some
G,X, Y .



Inverse semigroups: P-semigroups

Proving 2.
Given E-unitary S, the crucial question is: what is X?

Douglas: Let E = E(S), G = S/σ. Define 4 on G× E by:

(aσ, e) 4 (bσ, f) if and only if ∃c ∈ Re∩Sf such that bσ = (aσ)(cσ).

4 is a pre-order. Define ρ on G× E by:

(aσ, e)ρ(bσ, f) if and only if (aσ, e) 4 (bσ, f) and (bσ, f) 4 (aσ, e).

ρ is an equivalence on G×E. Put X = (G×E)/ρ and let 6 be
the partial order on X induced by 4.
The rule: (aσ) · (bσ, e) = ((ab)σ, e) defines an action of G on X
by order automorphisms. Put Y = {(E, e) : e ∈ E} ∼= E. Then
Y is an order ideal of X and a lower semilattice under 6.

Finally, S ∼= P (G,X, Y ).



Inverse semigroups: Free inverse semigroups

The free inverse semigroup FIS(X) on a non-empty set X is an
inverse semigroup together with a map ι : X → FIS(X) such
that for every inverse semigroup S and every map α : X → S,
there is a unique homomorphism α∗ : FIS(X)→ S such that
ια∗ = α.

Universal algebra considerations show that free inverse
semigroups exist; also the map ι is injective, and FIS(X) is
uniquely determined by X.

The question is: how do we describe its elements? Several
answers, but a striking one due to Douglas realises them as
certain graphs, now known as Munn trees.



Inverse semigroups: Free inverse semigroups

A ring R is prime if IJ = 0 implies I = 0 or J = 0 where I, J
are ideals of R.

A ring R is primitive if it has a faithful simple R-module.

A primitive ring is prime.



Inverse semigroups: Free inverse semigroups

Theorem (Formanek)

Let k be a field. If G is a free group of rank at least 2, then the
group algebra k[G] is primitive.
A similar result holds for free monoids/semigroups.

Theorem
For a free inverse semigroup S of finite rank, k[S] is not prime.

Theorem (Pedro Silva)

For a free inverse semigroup S of infinite rank, k[S] is prime.

Theorem (WDM and M.J.Crabb)

For a nontrivial free monoid M and an ideal S of M , tfae:
1. k[S] is primitive;
2. k[S] is prime;
3. M has infinite rank.


