Variants of semigroups - the case study of finite full transformation monoids

Igor Dolinka
dockie@dmi.uns.ac.rs

Department of Mathematics and Informatics, University of Novi Sad

The 19th NBSAN Meeting
York, UK, January 14, 2015
Prime suspects

Mr. Shady Corleone

Violet Moon (special undercover agent)
Now seriously... co-authors

I.D.

James East
(U. of Western Sydney)
Variants of semigroups

Let \((S, \cdot)\) be a semigroup and \(a \in S\). Given these, one can easily define an alternative product \(\star_a\) on \(S\), namely

\[x \star_a y = xay. \]

This is the variant \(S^a = (S, \star_a)\) of \(S\) with respect to \(a\).

First mention of variants (as far as we know): Lyapin’s book from 1960 (in Russian).

Magill (1967): Semigroups of functions \(X \to Y\) under an operation defined by

\[f \cdot g = f \circ \theta \circ g, \]

where \(\theta\) is a fixed function \(Y \to X\). For \(Y = X\), this is exactly a variant of \(T_X\).
History of variants – continued

Hickey (1980s): Variants of general semigroups → a new characterisation of Nambooripad’s order on regular semigroups

G. Y. Tsyaputa (2004/5): variants of finite full transformation semigroups \mathcal{T}_n

- classification of non-isomorphic variants
- idempotents, Green’s relations
- analogous questions for \mathcal{PT}_n

A more accessible account of her results may be found in the monograph of Ganyushkin & Mazorchuk Classical Finite Transformation Semigroups (Springer, 2009).
Several examples

For a group G and $a \in G$, we always have $G^a \cong G$ via $x \mapsto xa$. The identity element in G^a is a^{-1}.

On the other hand, if S the bicyclic monoid, then $a, b \in S$, $a \neq b$ implies $S^a \not\cong S^b$.

If S is a monoid, $a, u, v \in S$, and u, v are units, then $S^{uav} \cong S^a$ via $x \mapsto vxu$.

Thus, for any $a \in T_X$ there exists $e \in E(T_X)$ such that $T^a_X \cong T^e_X$.

A WORD OF CAUTION: If S is a regular semigroup, S^a is not regular in general! However, for regular S and arbitrary $a \in S$, $\text{Reg}(S^a)$ is always a subsemigroup of S^a (Khan & Lawson).
A word of caution, you said…?

Egg-box picture of T_4^a for $a = [1, 2, 3, 3]$
A word of caution, you said…?

Egg-box picture of \mathcal{T}_4^a for $a = [1, 1, 3, 3]$

Egg-box picture of \mathcal{T}_4^a for $a = [1, 1, 1, 4]$

NBSAN, York, January 14, 2015 Igor Dolinka: Variants of \mathcal{T}_n
Three important sets

\[P_1 = \{ x \in S : \ xa \ R \ x \}, \quad P_2 = \{ x \in S : \ ax \ L \ x \}, \]

\[P = P_1 \cap P_2 \]

Easy facts:

- \(y \in P_1 \iff L_y \subseteq P_1 \),
- \(y \in P_2 \iff R_y \subseteq P_2 \),
- \(\text{Reg}(S^a) \subseteq P \)
Green’s relations: R^a, L^a, H^a, D^a

\[
R^a_x = \begin{cases}
R_x \cap P_1 & \text{if } x \in P_1 \\
\{x\} & \text{if } x \in S \setminus P_1,
\end{cases}
\]

\[
L^a_x = \begin{cases}
L_x \cap P_2 & \text{if } x \in P_2 \\
\{x\} & \text{if } x \in S \setminus P_2,
\end{cases}
\]

\[
H^a_x = \begin{cases}
H_x & \text{if } x \in P \\
\{x\} & \text{if } x \in S \setminus P,
\end{cases}
\]

\[
D^a_x = \begin{cases}
D_x \cap P & \text{if } x \in P \\
L^a_x & \text{if } x \in P_2 \setminus P_1 \\
R^a_x & \text{if } x \in P_1 \setminus P_2 \\
\{x\} & \text{if } x \in S \setminus (P_1 \cup P_2).
\end{cases}
\]
Group \mathcal{H}-classes vs group \mathcal{H}^a-classes (in P)

Let $S = \mathcal{T}_4$ and $a = [1, 2, 3, 3]$.

<table>
<thead>
<tr>
<th>x</th>
<th>Is H_x a group \mathcal{H}-class of \mathcal{T}_4?</th>
<th>Is H_x a group \mathcal{H}^a-class of \mathcal{T}_4^a?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[1, 1, 3, 3]$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$[4, 2, 2, 4]$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$[2, 4, 2, 4]$</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>$[1, 3, 1, 3]$</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
...is to conduct a thorough algebraic and combinatorial analysis of \mathcal{T}_X^a where $|X| = n$ and a is a fixed transformation on X.

As we noted, we may assume that a is idempotent with $r = \text{rank}(a) < n$,

$$a = \begin{pmatrix} A_1 & \cdots & A_r \\ a_1 & \cdots & a_r \end{pmatrix},$$

so that $a_i \in A_i$ for all $i \in [1, r]$.

Here $A = \text{im}(a) = \{a_1, \ldots, a_r\}$ and $\alpha = \ker(a) = (A_1| \cdots |A_r)$,

with $\lambda_i = |A_i|$. Furthermore, for $I = \{i_1, \ldots, i_m\} \subseteq [1, r]$ we write $\Lambda_I = \lambda_{i_1} \cdots \lambda_{i_m}$ and $\Lambda = \lambda_1 \cdots \lambda_r$.

Let $B \subseteq X$ and let β be an equivalence relation on X. We say that B saturates β if each β-class contains at least one element of B. Also, we say that β separates B if each β-class contains at most one element of B.

\[
P_1 = \{ f \in \mathcal{T}_X : \text{rank}(fa) = \text{rank}(f) \} = \{ f \in \mathcal{T}_X : \alpha \text{ separates im}(f) \}
\]

\[
P_2 = \{ f \in \mathcal{T}_X : \text{rank}(af) = \text{rank}(f) \} = \{ f \in \mathcal{T}_X : A \text{ saturates ker}(f) \}
\]

\[
P = \{ f \in \mathcal{T}_X : \text{rank}(afa) = \text{rank}(f) \} = \text{Reg}(\mathcal{T}_X^a) \leq \mathcal{T}_X^a
\]
Green’s relations in \mathcal{T}_X^a (Tsyaputa, 2004)

\[R_f^a = \begin{cases} R_f \cap P_1 & \text{if } f \in P_1 \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus P_1, \end{cases} \]

\[L_f^a = \begin{cases} L_f \cap P_2 & \text{if } f \in P_2 \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus P_2, \end{cases} \]

\[H_f^a = \begin{cases} H_f & \text{if } f \in P \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus P, \end{cases} \]

\[D_f^a = \begin{cases} D_f \cap P & \text{if } f \in P \\ L_f^a & \text{if } f \in P_2 \setminus P_1 \\ R_f^a & \text{if } f \in P_1 \setminus P_2 \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus (P_1 \cup P_2). \end{cases} \]
Recall that in \mathcal{T}_X, the D-classes form a chain:

$$D_n > D_{n-1} > \cdots > D_2 > D_1.$$

Each of the D-classes D_{r+1}, \ldots, D_n is completely ‘shattered’ into singleton ‘shrapnels’ / D^a-classes in \mathcal{T}_X^a.

Since all constant maps trivially belong to P, D_1 is preserved, and remains a right zero band.

For $2 \leq m \leq r$, the class D_r separates into a single regular chunk $D_r \cap P$ and a number of non-regular pieces, as seen on the following picture...
Theorem 4.2 yields an intuitive picture of the Green’s structure of \(T_a \). Recall that the \(D \)-classes of \(T_a \) are precisely the \(D \)-classes contained in such a \(T_a \)-class, namely those of the form \(\{a \} \). Some of these \(D \)-classes in \(T_a \) remain a (regular) \(D \)-class, namely those of the form \(\{a \} \). Now fix some \(r \) such that \(r < n \). The situation is more complicated in \(T_a \). Next, note that (ii) implies (i). Next suppose (iii) holds. Since \(\text{im}(f) \) and \(\text{ker}(f) \) are both ideals in \(T_a \), we may write \(\text{im}(f) = \text{ker}(f) \). The situation is more complicated in \(T_a \). Next, note that (ii) implies (i). Next suppose (iii) holds. Since \(\text{im}(f) \) and \(\text{ker}(f) \) are both ideals in \(T_a \), we may write \(\text{im}(f) = \text{ker}(f) \). The situation is more complicated in \(T_a \). Next, note that (ii) implies (i). Next suppose (iii) holds. Since \(\text{im}(f) \) and \(\text{ker}(f) \) are both ideals in \(T_a \), we may write \(\text{im}(f) = \text{ker}(f) \). The situation is more complicated in \(T_a \).
Order of the \mathcal{D}^a-classes

Let $f, g \in \mathcal{T}_X$. Then $D^a_f \leq D^a_g$ in \mathcal{T}^a_X if and only if one of the following holds:

- $f = g$,
- $\text{rank}(f) \leq \text{rank}(aga)$,
- $\text{im}(f) \subseteq \text{im}(ag)$,
- $\text{ker}(f) \supseteq \text{ker}(ga)$.

The maximal \mathcal{D}^a-classes are those of the form $D^a_f = \{f\}$ where $\text{rank}(f) > r$.

NBSAN, York, January 14, 2015

Igor Dolinka: Variants of \mathcal{T}_n
Order of the \mathcal{D}^a-classes
The rank of \mathcal{T}_X^a

Let $M = \{ f \in \mathcal{T}_X : \text{rank}(f) > r \}$.

Then $\mathcal{T}_X^a = \langle M \rangle$; furthermore, any generating set for \mathcal{T}_X^a contains M.

Consequently, M is the unique minimal (with respect to containment or size) generating set of \mathcal{T}_X^a, and

$$\text{rank}(\mathcal{T}_X^a) = |M| = \sum_{m=r+1}^{n} S(n, m) \binom{n}{m} m!,$$

where $S(n, m)$ denotes the Stirling number of the second kind.
‘Positioning’ with respect to the regular classes

- If \(f \in P \), then \(D_f^a \leq D_g^a \) if and only if \(\text{rank}(f) \leq \text{rank}(aga) \).
- If \(g \in P \), then \(D_f^a \leq D_g^a \) if and only if \(\text{rank}(f) \leq \text{rank}(g) \).

Consequences:

- The regular \(\mathcal{D}^a \)-classes of \(\mathcal{T}_X^a \) form a chain: \(D_1^a < \cdots < D_r^a \) (where \(D_m^a = \{ f \in P : \text{rank}(f) = m \} \) for \(m \in [1, r] \)).
- ‘Co-ordinatisation’ of the non-regular, ‘fragmented’ \(\mathcal{D}^a \)-classes: if \(\text{rank}(f) = m \leq r \) and \(\text{rank}(afa) = p < m \), then \(D_f^a \) sits below \(D_m^a \) and above \(D_p^a \).
- The ‘crown’: A maximal \(\mathcal{D}^a \)-class \(D_f^a = \{ f \} \) sits above \(D_r^a \) if and only if \(\text{rank}(afa) = r \). The number of such \(\mathcal{D}^a \)-classes is equal to \((n^{n-r} - r^{n-r})r! \).
Reg(\mathcal{T}_X^a) – examples

Egg-box diagrams of the regular subsemigroups $P = \text{Reg}(\mathcal{T}_5^a)$ in the cases
(from left to right): $a = [1, 1, 1, 1, 1]$, $a = [1, 2, 2, 2, 2]$, $a = [1, 1, 2, 2, 2]$, $a = [1, 2, 3, 3, 3]$, $a = [1, 2, 2, 3, 3]$, $a = [1, 2, 3, 4, 4]$.
Do you see what I am seeing???

Egg-box diagrams of \mathcal{T}_3 (left) and $\text{Reg}(\mathcal{T}_5^a)$ for $a = [1, 2, 2, 3, 3]$ (right).
No, this is not just a coincidence...!

\[\mathcal{T}(X, A) = \{ f \in \mathcal{T}_X : \text{im}(f) \subseteq A \} \]

\[\mathcal{T}(X, \alpha) = \{ f \in \mathcal{T}_X : \text{ker}(f) \supseteq \alpha \} \]

– transformation semigroups with restricted range (Sanwong & Sommanee, 2008), and restricted kernel (Mendes-Gonçalves & Sullivan, 2010).

Fact:

\[\text{Reg}(\mathcal{T}(X, A)) = \mathcal{T}(X, A) \cap P_2 \]

\[\text{Reg}(\mathcal{T}(X, \alpha)) = \mathcal{T}(X, \alpha) \cap P_1 \]
Structure Theorem – Part 1

\[\psi : f \mapsto (fa, af) \]

is a well-defined embedding of \(\text{Reg}(\mathcal{T}_X^a) \) into the direct product \(\text{Reg}(\mathcal{T}(X, A)) \times \text{Reg}(\mathcal{T}(X, \alpha)) \). Its image consists of all pairs \((g, h)\) such that

\[\text{rank}(g) = \text{rank}(h) \quad \text{and} \quad g|_A = (ha)|_A. \]

Thus \(\text{Reg}(\mathcal{T}_X^a) \) is a subdirect product of \(\text{Reg}(\mathcal{T}_X^a) \) and \(\text{Reg}(\mathcal{T}(X, \alpha)) \).
The maps

\[\phi_1 : \text{Reg}(\mathcal{T}(X, A)) \rightarrow \mathcal{T}_A : g \mapsto g|_A \]

\[\phi_2 : \text{Reg}(\mathcal{T}(X, \alpha)) \rightarrow \mathcal{T}_A : g \mapsto (ga)|_A \]

are epimorphisms, and the following diagram commutes:

Further, the induced map \(\phi = \psi_1 \phi_1 = \psi_2 \phi_2 = \text{Reg}(\mathcal{T}^a_X) \rightarrow \mathcal{T}_A \) is an epimorphism that is ‘group / non-group preserving’.
Size and rank of $P = \text{Reg}(\mathcal{T}_X^a)$

$$|P| = \sum_{m=1}^{r} m! m^{n-r} S(r, m) \sum_{I \in \left[1, r\right]} \Lambda_I.$$

Let D be the top (rank-r) \mathcal{D}^a-class of P.

$$\text{rank}(P) = \text{rank}(D) + \text{rank}(P : D) = r^{n-r} + 1$$
The idempotent generated subsemigroup $\left\langle E_a(T^a_X) \right\rangle_a$

- $E_a(T^a_X) = \{ f \in T_X : (af)|_{\text{im}(f)} = \text{id}|_{\text{im}(f)} \}.$

- $|E_a(T^a_X)| = \sum_{m=1}^{r} m^{n-m} \sum_{I \in \binom{[1,r]}{m}} \Lambda_I.$

- We obtain a pleasing generalisation of celebrated Howie’s Theorem:

$$\mathcal{E}^a_X = \left\langle E_a(T^a_X) \right\rangle_a = E_a(D) \cup (P \setminus D).$$
The idempotent generated subsemigroup \(\langle E_a(T_X^a) \rangle_a \)

\[\text{rank}(E_X^a) = \text{idrank}(E_X^a) = r^{n-r} + \rho_r, \]
where \(\rho_2 = 2 \) and \(\rho_r = \binom{r}{2} \) if \(r \geq 3 \).

The number of idempotent generating sets of \(E_X^a \) of the minimal possible size is

\[
\left[(r - 1)^{n-r} \Lambda \right]^{\rho_r} \Lambda! S(r^{n-r}, \Lambda) \sum_{\Gamma \in \mathbb{T}_r} \frac{1}{\lambda_1^{d_{\Gamma}^+(1)} \cdots \lambda_r^{d_{\Gamma}^+(r)}}.
\]

where \(\mathbb{T}_r \) is the set of all strongly connected tournaments on \(r \) vertices.
The ideals of P

- The ideals of P are precisely

$$l^a_m = \{ f \in P : \text{rank}(f) \leq m \}$$

for $m \in [1, r]$.

- They are all idempotent generated (by $E_a(D^a_m)$) except $P = l^a_r$ itself.

-

$$\text{rank}(l^a_m) = \text{idrank}(l^a_m) = \begin{cases} m^{n-r}S(r, m) & \text{if } 1 < m < r \\ n & \text{if } m = 1. \end{cases}$$
Future work

- Conduct an analogous study for variants of:
 - full linear (matrix) monoids
 - symmetric inverse semigroups
 - various diagram semigroups (partition, (partial) Brauer, (partial) Jones, wire, Kaufmann, ...)
 - ...

- Consider an ‘Ehresmann-style’ defined small (semi)category (aka partial monoid / semigroup) S. One can turn each hom-set S_{ij} (i - domain, j - codomain) into a semigroup by fixing a ‘sandwich’ element $a \in S_{ji}$ and defining

 $$x \star y = x \circ a \circ y.$$

These sandwich semigroups generalise the variants.
 - applicable to functions, matrices, diagrams, ...
THANK YOU!

Questions and comments to:
dockie@dmi.uns.ac.rs

Further information may be found at:
http://people.dmi.uns.ac.rs/~dockie