Idempotent generators in finite partition monoids

James East (University of Western Sydney)
with Robert Gray (University of East Anglia)

NBSAN – July 2014 – Edinburgh
Joint work with Bob Gray

James East
Idempotent generators in finite partition monoids
0. Outline

1. Transformation semigroups
 - Singular part
 - Ideals

2. Partition monoids

3. Brauer monoids

4. Jones monoids

5? Regular \(*\)-semigroups
Don’t mention the cri%$et

James East Idempotent generators in finite partition monoids
1. Transformation Semigroups

Let

- n be a positive integer
- $n = \{1, \ldots, n\}$
- $S_n = \{\text{permutations } n \to n\}$ — symmetric group
- $T_n = \{\text{functions } n \to n\}$ — transformation semigroup
- $T_n \setminus S_n = \{\text{non-invertible functions } n \to n\}$ — singular ideal
1. Transformation Semigroups

Theorem (Howie, 1966)

- \(\mathcal{T}_n \setminus S_n \) is idempotent generated.
- \(\mathcal{T}_n \setminus S_n = \langle e_{ij}, e_{ji} : 1 \leq i < j \leq n \rangle \).

![Diagram of \(e_{ij} \) and \(e_{ji} \)]

Theorem (Howie, 1978)

- \(\text{rank}(\mathcal{T}_n \setminus S_n) = \text{idrank}(\mathcal{T}_n \setminus S_n) = \binom{n}{2} = \frac{n(n-1)}{2} \).
1. Transformation Semigroups

Theorem (Howie, 1978)

For \(X \subseteq \{ e_{ij}, e_{ji} : 1 \leq i < j \leq n \} \), define a di-graph \(\Gamma_X \) by

- \(V(\Gamma_X) = \mathbb{N} \), and
- \(E(\Gamma_X) = \{(i, j) : e_{ij} \in X\} \).

Then \(T_n \cap S_n = \langle X \rangle \) iff \(\Gamma_X \) is strongly connected and complete.

\[T_3 \cap S_3 = \langle e_{12}, e_{23}, e_{31} \rangle \]

\[T_3 \cap S_3 \neq \langle e_{12}, e_{23}, e_{13} \rangle \]
Theorem (Howie, 1978 and Wright, 1970)

The minimal idempotent generating sets of $\mathcal{T}_n \setminus S_n$ are in one-one correspondence with the strongly connected labelled tournaments on n nodes.

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>24</td>
<td>544</td>
<td>22320</td>
<td>1677488</td>
<td>236522496</td>
<td>\cdots</td>
</tr>
</tbody>
</table>
The ideals of \mathcal{T}_n are $I_r = \{ \alpha \in \mathcal{T}_n : |\text{im}(\alpha)| \leq r \}$ for $1 \leq r \leq n$.

Theorem (Howie and McFadden, 1990)

If $2 \leq r \leq n - 1$, then I_r is idempotent generated, and

$$\text{rank}(I_r) = \text{idrank}(I_r) = S(n, r),$$

a Stirling number of the second kind.

- $I_{n-1} = \mathcal{T}_n \setminus S_n$ and $S(n, n - 1) = \binom{n}{2}$.
- $\text{rank}(I_1) = \text{idrank}(I_1) = |I_1| = n$ — right zero semigroup.
- Similar results for matrix semigroups (and others).
- Today: diagram monoids.
2. Partition Monoids

- Let \(n = \{1, \ldots, n\} \) and \(n' = \{1', \ldots, n'\} \).

- The *partition monoid* on \(n \) is
 \[\mathcal{P}_n = \{\text{set partitions of } n \cup n'\} \]
 \[\equiv \{\text{(equiv. classes of) graphs on vertex set } n \cup n'\}\}. \]

- Eg: \(\alpha = \left\{\{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\}\right\} \in \mathcal{P}_6 \)
Let $\alpha, \beta \in \mathcal{P}_n$. To calculate $\alpha \beta$:

1. connect bottom of α to top of β,
2. remove middle vertices and floating components,
3. smooth out resulting graph to obtain $\alpha \beta$.

![Diagram](image)

The operation is associative, so \mathcal{P}_n is a semigroup (monoid, etc).

- What can we say about idempotents and ideals of \mathcal{P}_n?
2. Partition Monoids — Submonoids of \mathcal{P}_n

- $B_n = \{ \alpha \in \mathcal{P}_n : \text{blocks of } \alpha \text{ have size 2} \}$ — Brauer monoid

 \[
 \begin{array}{cc}
 \circ & \circ \\
 \end{array}
 \]

 $\in B_5$

- $S_n = \{ \alpha \in B_n : \text{blocks of } \alpha \text{ hit } n \text{ and } n' \}$ — symmetric group

 \[
 \begin{array}{cc}
 \circ & \circ \\
 \end{array}
 \]

 $\in S_5$

- $J_n = \{ \alpha \in B_n : \alpha \text{ is planar} \}$ — Jones monoid

 \[
 \begin{array}{cc}
 \circ & \circ \\
 \end{array}
 \]

 $\in J_5$

What can we say about idempotents and ideals of \mathcal{P}_n? B_n? J_n?
2. Partition Monoids

Theorem (E, 2011)

- $\mathcal{P}_n \setminus \mathcal{S}_n$ is idempotent generated.
- $\mathcal{P}_n \setminus \mathcal{S}_n = \langle t_r, t_{ij} : 1 \leq r \leq n, 1 \leq i < j \leq n \rangle$.

$$t_r = \begin{array}{ccccccc}
1 & \cdots & r & \cdots & n \\
\cdot & & \cdot & & \cdot
\end{array} \quad t_{ij} = \begin{array}{ccccccc}
1 & \cdots & i & \cdots & j & \cdots & n \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}$$

- $\text{rank}(\mathcal{P}_n \setminus \mathcal{S}_n) = \text{idrank}(\mathcal{P}_n \setminus \mathcal{S}_n) = \binom{n+1}{2} = \frac{n(n+1)}{2}$.

Any minimal idempotent generating set for $P_n \setminus S_n$ is a subset of

$$\{t_r : 1 \leq r \leq n\} \cup \{t_{ij}, e_{ij}, e_{ji}, f_{ij}, f_{ji} : 1 \leq i < j \leq n\}.$$
2. Partition Monoids

Let Γ_n be the di-graph with vertex set

$$V(\Gamma_n) = \{A \subseteq n : |A| = 1 \text{ or } |A| = 2\}$$

and edge set

$$E(\Gamma_n) = \{(A, B) : A \subseteq B \text{ or } B \subseteq A\}.$$

Γ_5 (with loops omitted)
2. Partition Monoids

A subgraph H of a di-graph G is a permutation subgraph if $V(H) = V(G)$ and the edges of H induce a permutation of $V(G)$.

A permutation subgraph of Γ_n is determined by:

- a permutation of a subset A of n with no fixed points or 2-cycles ($A = \{2, 3, 5\}$, $2 \mapsto 3 \mapsto 5 \mapsto 2$), and
- a function $n \setminus A \to n$ with no 2-cycles ($1 \mapsto 4$, $4 \mapsto 4$).
2. Partition Monoids

Theorem (E+Gray, 2013)

The minimal idempotent generating sets of $\mathcal{P}_n \setminus S_n$ are in one-one correspondence with the permutation subgraphs of Γ_n.

The number of minimal idempotent generating sets of $\mathcal{P}_n \setminus S_n$ is equal to

$$\sum_{k=0}^{n} \binom{n}{k} a_k b_{n,n-k},$$

where $a_0 = 1$, $a_1 = a_2 = 0$, $a_{k+1} = ka_k + k(k-1)a_{k-2}$, and

$$b_{n,k} = \sum_{i=0}^{\left\lfloor \frac{k}{2} \right\rfloor} (-1)^i \binom{k}{2i} (2i - 1)!!n^{k-2i}.$$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>201</td>
<td>2604</td>
<td>40915</td>
<td>754368</td>
<td>\ldots</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The ideals of \mathcal{P}_n are

$$I_r = \{ \alpha \in \mathcal{P}_n : \alpha \text{ has } \leq r \text{ transverse blocks} \}$$

for $0 \leq r \leq n$.

Theorem (E+G, 2013)

If $0 \leq r \leq n - 1$, then I_r is idempotent generated, and

$$\text{rank}(I_r) = \text{idrank}(I_r) = \sum_{j=r}^{n} \left(\begin{array}{c} n \\ j \end{array} \right) S(j, r) B_{n-j} = \sum_{j=r}^{n} S(n, j) \left(\begin{array}{c} j \\ r \end{array} \right),$$

where B_k is the kth Bell number.
Let Λ_n be the di-graph with vertex set

$$V(\Lambda_n) = \{A \subseteq \mathbb{n} : |A| = 2\}$$

and edge set

$$E(\Lambda_n) = \{(A, B) : A \cap B \neq \emptyset\}.$$
3. Brauer Monoids

Theorem (E+G, 2013)

The minimal idempotent generating sets of $\mathcal{B}_n \setminus \mathcal{S}_n$ are in one-one correspondence with the permutation subgraphs of Λ_n.

No formula is known for the number of minimal idempotent generating sets of $\mathcal{B}_n \setminus \mathcal{S}_n$ (yet). Very hard!

$$
\begin{array}{cccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\hline
 1 & 1 & 1 & 6 & 265 & 126,140 & 855,966,441 & \text{????} & \cdots
\end{array}
$$

There are (way) more than $(n - 1)! \cdot (n - 2)! \cdot \cdots \cdot 3! \cdot 2! \cdot 1!$.

- Thanks to James Mitchell for $n = 5, 6$.
- Partition monoids are now on GAP!
- Semigroups package: tinyurl.com/semigroups
The ideals of B_n are

$$I_r = \{ \alpha \in B_n : \alpha \text{ has } \leq r \text{ transverse blocks} \}$$

for $0 \leq r = n - 2k \leq n$.

Theorem (E+G, 2013)

If $0 \leq r = n - 2k \leq n - 2$, then I_r is idempotent generated and

$$\text{rank}(I_r) = \text{idrank}(I_r) = \binom{n}{2k}(2k - 1)!! = \frac{n!}{2^kk!r!}.$$
Let Ξ_n be the di-graph with vertex set

$$V(\Xi_n) = \{\{1, 2\}, \{2, 3\}, \ldots, \{n-1, n\}\}$$

and edge set

$$E(\Xi_n) = \{(A, B) : A \cap B \neq \emptyset\}.$$
4. Jones Monoids

Theorem (E+G, 2013)

The minimal idempotent generating sets of $J_n \setminus \{1\}$ are in one-one correspondence with the permutation subgraphs of Ξ_n.

The number of minimal idempotent generating sets of $J_n \setminus \{1\}$ is F_n, the nth Fibonacci number.

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>…</td>
</tr>
</tbody>
</table>
The ideals of \mathcal{J}_n are

$$l_r = \{ \alpha \in \mathcal{J}_n : \alpha \text{ has } \leq r \text{ transverse blocks} \}$$

for $0 \leq r = n - 2k \leq n$.

Theorem (E+G, 2013)

If $0 \leq r = n - 2k \leq n - 2$, then l_r is idempotent generated and

$$\text{rank}(l_r) = \text{idrank}(l_r) = \frac{r + 1}{n + 1} \binom{n + 1}{k}.$$
Values of $\text{rank}(I_r) = \text{idrank}(I_r)$:

<table>
<thead>
<tr>
<th>$n \backslash r$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>14</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>28</td>
<td>20</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>42</td>
<td>48</td>
<td>27</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>42</td>
<td>90</td>
<td>75</td>
<td>35</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definition

\((S, \cdot, ^*)\) is a regular \(*\)-semigroup if \((S, \cdot)\) is a semigroup and

\[
\begin{align*}
 s^{**} &= s, & (st)^* &= t^*s^*, & ss^*s &= s \quad \text{(and } s^*ss^* = s^*).
\end{align*}
\]

Examples

- groups and inverse semigroups, where \(s^* = s^{-1}\)
- \(P_n\), where \(\alpha^* = \alpha\) turned upside down
- \(B_n, J_n, S_n\)
- Not \(T_n\) — \(J\)-classes must be square
5. Regular \(*\)-semigroups

Green’s relations on a semigroup S are defined, for $x, y \in S$, by

- $x \mathbin{\mathcal{L}} y$ if and only if $S^1 x = S^1 y$,
- $x \mathbin{\mathcal{R}} y$ if and only if $x S^1 = y S^1$,
- $x \mathbin{\mathcal{J}} y$ if and only if $S^1 x S^1 = S^1 y S^1$,
- $x \mathbin{\mathcal{H}} y$ if and only if $x \mathbin{\mathcal{L}} y$ and $x \mathbin{\mathcal{R}} y$.

Within a \mathcal{J}-class $J(x)$ in a finite semigroup:

- the \mathcal{R}-class $R(x)$
- the \mathcal{L}-class $L(x)$
- the \mathcal{H}-class $H(x)$
The \mathcal{J}-classes of a semigroup S are partially ordered:

- $J(x) \leq J(y)$ iff $x \in S^1 y S^1$.

Diagram:

- A complex diagram illustrating the partial ordering of \mathcal{J}-classes with nodes and directed edges.
5. Regular \ast-semigroups

The \mathcal{J}-classes of a semigroup S are partially ordered:

- $J(x) \leq J(y)$ iff $x \in S^1yS^1$.

If S is $\mathcal{P}_n \setminus S_n$ or $\mathcal{B}_n \setminus S_n$ or $\mathcal{I}_n \setminus \{1\}$, then:

- S is a regular \ast-semigroup,
- S is idempotent generated,
- the \mathcal{J}-classes form a chain $J_1 < \cdots < J_k$,
- $J_r \subseteq \langle J_{r+1} \rangle$ for each r.

James East
Idempotent generators in finite partition monoids
5. Regular \ast-semigroups — $\mathcal{B}_4, \mathcal{B}_5, \mathcal{B}_6$ (thanks to GAP)
Theorem (applies to $\mathcal{P}_n \setminus S_n$ and $\mathcal{B}_n \setminus S_n$ and $\mathcal{J}_n \setminus \{1\}$)

Let S be a finite regular \ast-semigroup and suppose

- S is idempotent generated,
- the \mathcal{J}-classes of S form a chain $J_1 < \cdots < J_k$,
- $J_r \subseteq \langle J_{r+1} \rangle$ for each r.

Then

- the ideals of S are the sets $I_r = \langle J_r \rangle = J_1 \cup \cdots \cup J_r$,
- the ideals of S are idempotent generated,
- $\text{rank}(I_r) = \text{idrank}(I_r) = \text{the number of } \mathcal{R}\text{-classes in } J_r$.
If J is a \mathcal{J}-class of a semigroup S, we may form the *principle factor*

$$J^\circ = J \cup \{0\}$$

with product $s \circ t = \begin{cases} st & \text{if } s, t, st \in J \\ 0 & \text{otherwise.} \end{cases}$

Lemma (applies to $\mathcal{P}_n \setminus S_n$ and $\mathcal{B}_n \setminus S_n$ and $\mathcal{J}_n \setminus \{1\}$)

If $S = \langle J \rangle$ where J is a \mathcal{J}-class, then

$$\text{rank}(S) = \text{rank}(J^\circ).$$

Further, S is idempotent generated iff J° is, and

$$\text{idrank}(S) = \text{idrank}(J^\circ).$$

Any minimal (idempotent) generating set for S is contained in J.

James East

Idempotent generators in finite partition monoids
Proposition

Let

- S be a regular \ast-semigroup,
- $E(S) = \{s \in S : s^2 = s\}$ — idempotents of S,
- $P(S) = \{s \in S : s^2 = s = s^*\}$ — projections of S.

Then

- $E(S) = P(S)^2$,
- $\langle E(S) \rangle = \langle P(S) \rangle$,
- S is idempotent generated iff it is projection generated,
- each \mathcal{R}-class (and \mathcal{L}-class) contains exactly one projection.
Consider the projections of some finite regular \ast-semigroup J°:

We create a graph $\Gamma(J^\circ)$.

\[0 = pr = rp = qr = rq = qs = sq \]
5. Regular \ast-semigroups — minimal generating sets

Definition

The graph $\Gamma(J^\circ)$ has:
- vertices $P(J) = \{\text{non-zero projections}\}$,
- edges $p \to q$ iff $pq \in J$.

If $S = \langle J \rangle$ is a finite idempotent generated regular \ast-semigroup, we define $\Gamma(S) = \Gamma(J^\circ)$.

Theorem

A subset $F \subseteq E(J)$ determines a subgraph $\Gamma_F(S)$ with

$$V(\Gamma_F(S)) = P(J) \quad \text{and} \quad E(\Gamma_F(S)) = \{ p \to q : pq \in F \}.$$

The set F is a minimal (idempotent) generating set for S iff $\Gamma_F(S)$ is a permutation subgraph.
Thanks for listening

Thank You!!