Special monoids

Homological finiteness properties for one-relator monoids and related monoids

Robert Gray (University of East Anglia) Benjamin Steinberg (City College of New York)

July 22, 2020 eNBSAN

Homological finiteness properties

Special monoids

Background

Homological finiteness properties

Special monoids

Ancient history

- In 1932 Magnus solved the word problem for one-relator groups.
- Inspired by his results, people considered the word problem for other one-relator algebraic structures.
- In 1962, Shirshov solved the word problem for one-relator Lie algebras.
- The word problem for one-relator monoids remains open.
- The problem: given $M = \langle A \mid u = v \rangle$, decide whether two words over A represent the same element of M.
- There has been lots of work by people like Adjan, Lallement, Oganesyan, Guba, Howie and Pride.

What is known and why it is hard

- Adjan solved the word problem for cancellative one-relator monoids and those with defining relation w = 1 in the 60s.
- These cases reduce to Magnus's theorem.
- Most of the remaining results reduce the word problem from presentations with longer relations to shorter ones.
- Matiyasevich (1967) constructed a 2-generator, 3-relator monoid with undecidable word problem.
- Borisov gave a 12-relator group presentation with undecidable word problem based on Matiyasevich's example.
- Ivanov, Margolis and Meakin reduced the one-relator monoid word problem to the one-relator inverse monoid word problem with relation w = 1.
- Gray showed the word problem is undecidable for inverse monoids with defining relation w = 1.

Kobayashi's question

- When we can't solve a problem in math, we study variants of it.
- Kobayashi asked whether the word problem for one-relator monoids can be solved by a particularly nice algorithm.

Question (Kobayashi (2000))

Does every one-relator monoid admit a finite complete rewriting system?

- A complete rewriting system (CRS) is a presentation where you can solve the word problem as in the free group.
- Replacing left hand sides by right hand sides of a relation, will always result in a unique reduced word in finitely many steps.
- A finite CRS yields decidable word problem.

More on Kobayashi's question

- It is an open question if one-relator groups admit a finite CRS.
- It is an open question to decide whether a one-relator presentation is already complete.
- To prove that a monoid does not admit a finite CRS, we need invariants that can detect this.
- Homological finiteness is a popular such invariant.

- Homological finiteness properties for groups were introduced by Bieri in the 70s.
- The extension to monoids is straightforward and was studied in the 80s by:
 - 1. Bieri and Renz to introduce higher Σ -invariants of groups;
 - 2. Squier and Anick to study complete rewriting systems.
- Let M be a monoid and $\mathbb{Z}M$ its monoid ring.
- \mathbb{Z} is the trivial module.
- M is of type FP_n with $0 \leq n \leq \infty$ if there is a free resolution

 $\cdots \to F_1 \to F_0 \to \mathbb{Z}$

with F_i finitely generated for $0 \le i \le n$.

Warning: monoids are not ambidextrous

- The above definition is incomplete.
- We must specify if we use left or right modules.
- There are two distinct notions: left and right FP_n .
- Since the classes of monoids in this talk are left/right dual, we can get away with considering only left modules.
- The right hand versions then follow by duality.

Special monoids

Key facts

- Every finitely generated monoid is FP_1 .
- Every finitely presented monoid is FP_2 .
- Neither converse holds.
- Stallings gave the first finitely presented group that is not FP_3 .
- Bieri gave finitely presented groups that are FP_n but not FP_{n+1} for all $n \ge 2$.

Theorem (Anick)

If M has a finite CRS, then M is FP_{∞} .

- This improves an earlier result of Squier for *FP*₃.
- To prove M has no finite CRS, it suffices to show M is not FP_n for some n > 2.

Lyndon's identity theorem

- Lyndon (1950) gave an explicit free resolution of Z for one-relator groups.
- An immediate consequence is the following theorem.

Theorem (Lyndon)

Let G be a one-relator group.

- 1. G is FP_{∞} .
- 2. $cd(G) \le 2$ unless the relator is a proper power (i.e., G has torsion), in which case $cd(G) = \infty$.
 - The cohomological dimension of a monoid is the length of a shortest free resolution of \mathbb{Z} .

Another question of Kobayashi

Question (Kobayashi (2000))

Is every one-relator monoid of type FP_{∞} ?

- Anick's theorem provides the connection between this question and his previous one.
- Kobayashi (2000) proved one-relator monoids are *FP*₃.

Theorem (Gray, BS)

Every one-relator monoid is of type FP_{∞} .

• We have a fairly good, but still incomplete, understanding of cohomological dimension of one-relator monoids.

Topological methods

- Geometric group theorists use topology to establish homological finiteness properties.
- Wall approach: Construct an Eilenberg-Mac Lane space for *G* with appropriate finiteness properties.
- Brown approach: Find a 'nice' action of G on a contractible CW complex such that the cell stabilizers have appropriate finiteness properties.
- For monoids people typically establish homological finiteness properties by writing down explicit free resolutions.
- We introduce monoid analogues of both the Wall and Brown approaches.
- Our approach builds actions of one-relator monoids on contractible CW complexes whose associated cellular chain complexes provide resolutions of the trivial module.

Homological finiteness properties

Special monoids

Other tools

- We use Adjan-Oganesyan compression to work by induction on the size of the relator.
- We then must deal with incompressable one-relator presentations.
- One family was handled by Kobayashi.
- The rest of this talk is about the other base case.
- The inductive step will have to await another talk...

Special monoids

• A special monoid presentation is one of the form:

$$M = \langle A \mid w_1 = 1, \dots, w_k = 1 \rangle.$$

- Any group is a special monoid.
- Any special monoid is either free or has non-trivial left/right invertible elements.
- So $\mathbb{N} \times \mathbb{N}$ is not special.
- For example, in $B = \langle a, b \mid ab = 1 \rangle$, a is right invertible and b is left invertible.
- Neither is invertible.

Results on special monoids

- Adjan (1960) proved the group of units of a special one-relator monoid is a one-relator group.
- He reduced the word problem to that of the group and invoked Magnus.
- Makanin (1966) proved the group of units G of a k-relator special monoid M is a k-relator group.
- He reduced the word problem of M to that of G.
- Zhang, in the 90s, gave an elegant approach to these results using infinite complete rewriting systems.
- He gave many structural results.
- He proved the monoid of right invertible elements of M is a free product of G with a finitely generated free monoid.

The main theorem

Theorem (Gray, BS)

Let M be a special monoid with group of units G.

- 1. If G is FP_n , then M is FP_n .
- 2. $\operatorname{cd}(G) \le \operatorname{cd}(M) \le \max\{2, \operatorname{cd}(G)\}.$

Corollary (Gray, BS)

Let M be a special one-relator monoid.

- 1. M is FP_{∞} .
- 2. $cd(M) \leq 2$ unless the relator is a proper power, in which case $cd(M) = \infty$.
 - Kobayashi obtained this for the case the relator is not a proper power.
 - In general, homological properties of a monoid and its group of units are unrelated.

Homological finiteness properties

Special monoids

Idea of the proof

- We use the Brown approach to prove our main theorem.
- We construct an action of the special monoid on a tree.
- We use the chain complex of the tree to build a non-free resolution of $\mathbb{Z}.$
- We use Brown's method to replace the non-free resolution by one whose finiteness properties are controlled by *G*.

Homological finiteness properties

Special monoids

Cayley graph of a free monoid

$$M = \{a, b\}^*.$$

Free resolution:

$$0 \longrightarrow \mathbb{Z}M^2 \longrightarrow \mathbb{Z}M \longrightarrow \mathbb{Z} \longrightarrow 0$$

So M is FP_{∞} and cd(M) = 1.

Special monoids

Cayley graph of the bicyclic monoid

$$B = \langle a, b \mid ab = 1 \rangle.$$

All strong components isomorphic; each component has unique entrance; each vertex of the component is a unique right translate of the entrance by a right invertible element; the cone is identical from each entrance; contracting strong components yields a tree. Tree of strong components for the bicyclic monoid

$$B = \langle a, b \mid ab = 1 \rangle.$$

$$1 \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longrightarrow} \cdots$$

- *b* acts by a right shift.
- *a* acts by a left shift but crushes the first edge to the vertex 1.

Geometry of special monoids

- Let M be a special monoid with Cayley graph Γ .
- The strong components of Γ are all isomorphic.
- Each strong component has a unique entrance (unique closest element to 1).
- The cone at each entrance is isomorphic to the whole Cayley graph.
- Each vertex of a strong component is a unique right translate of the entrance by a right invertible element.
- Identifying each strong component to a point yields a regular rooted tree $\mathcal{T}.$
- M acts on \mathcal{T} by simplicial maps.
- The M-action might crush edges of \mathcal{T} .

FP_n for modules

- Let R be a ring.
- An R-module N is of type FP_n with $0\leq n\leq\infty$ if there is a free resolution

$$\cdots \to F_1 \to F_0 \to N$$

with F_i finitely generated for $0 \le i \le n$.

Theorem (Bieri, Brown, Strebel) *If*

٠

$$\cdots \to N_1 \to N_0 \to N$$

is a resolution of N with N_i of type FP_{n-i} for $0 \le i \le n$, then N is FP_n .

The resolution from the tree $\ensuremath{\mathcal{T}}$

- Let M be a special monoid with group of units G.
- Assume that G is FP_n .
- Let R be the submonoid of right invertible elements.
- R = G * F where F is a finitely generated free monoid.
- Let ${\mathcal T}$ be the tree of strong components of the Cayley graph $\Gamma.$
- We have a resolution from simplicial chain groups

$$0 \longrightarrow C_1(\mathcal{T}) \longrightarrow C_0(\mathcal{T}) \longrightarrow \mathbb{Z} \longrightarrow 0$$

• To get M is FP_n we need $C_0(\mathcal{T})$ is FP_n and $C_1(\mathcal{T})$ is FP_{n-1} .

The 0-chain group

- The vertices of \mathcal{T} are the strong components of Γ .
- Each $m \in M$ can be uniquely written br where b is an entrance and $r \in R$.
- So ZM is a free right ZR-module with basis the set of entrances (in bijection with strong components of Γ).
- Thus $\mathbb{Z}M \otimes_{\mathbb{Z}R} \mathbb{Z}$ is a free abelian group with basis in bijection with the strong components of Γ .
- The *M*-action on $\mathbb{Z}M \otimes_{\mathbb{Z}R} \mathbb{Z}$ is the action of *M* on the strong components under this identification.
- So $C_0(\mathcal{T}) \cong \mathbb{Z}M \otimes_{\mathbb{Z}R} \mathbb{Z}$.

Resolving the 0-chains

- Recall $C_0(\mathcal{T}) \cong \mathbb{Z}M \otimes_{\mathbb{Z}R} \mathbb{Z}$.
- The functor $\mathbb{Z}M \otimes_{\mathbb{Z}R} (-)$ is exact (since $\mathbb{Z}M$ is a free right $\mathbb{Z}R$ -module) and sends $\mathbb{Z}R$ to $\mathbb{Z}M$.
- So if $F_{\bullet} \to \mathbb{Z}$ is a free resolution of \mathbb{Z} over $\mathbb{Z}R$, then $\mathbb{Z}M \otimes_{\mathbb{Z}R} F_{\bullet}$ is a free resolution of $\mathbb{Z}M \otimes_{\mathbb{Z}R} \mathbb{Z} \cong C_0(\mathcal{T})$.
- The rank of $\mathbb{Z}M \otimes_{\mathbb{Z}R} F_i$ is the same as the rank of F_i .
- So $C_0(\mathcal{T})$ is FP_n if R is FP_n .
- But R = G * F with F a finitely generated free monoid.
- The class of FP_n monoids is closed under free product (Cremmens-Otto).
- Since G is FP_n and F is FP_∞ , we have R is FP_n .

Homological finiteness properties

The 1-chain group

- The edges of ${\mathcal T}$ are the edges of Γ not belonging to a strong component.
- Let N be the free abelian group on the edges of Γ belonging to some strong component.
- Then $N \leq C_1(\Gamma)$ is a $\mathbb{Z}M$ -submodule.

•
$$C_1(\mathcal{T}) \cong C_1(\Gamma)/N.$$

- Note that $C_1(\Gamma)$ is a free $\mathbb{Z}M$ -module with basis the edges $1 \xrightarrow{a} a$.
- The set E of edges of Γ is a free M-set.
- N has \mathbb{Z} -basis an M-invariant subset of E.
- We proved any invariant subset of a free *M*-set is free.
- So N is a free $\mathbb{Z}M$ -module.
- We showed it is finitely generated.
- So $0 \longrightarrow N \longrightarrow C_1(\Gamma) \longrightarrow C_1(\mathcal{T}) \longrightarrow 0$ is a free resolution and hence $C_1(\mathcal{T})$ is FP_{∞} .

Special monoids

Cayley graph of the bicyclic monoid: revisited

$$B = \langle a, b \mid ab = 1 \rangle.$$

The blue edges freely generate the submodule of strong component edges.

Homological finiteness properties

Special monoids

Conclusion

• In summary, we have the resolution

$$0 \longrightarrow C_1(\mathcal{T}) \longrightarrow C_0(\mathcal{T}) \longrightarrow \mathbb{Z} \longrightarrow 0$$

•
$$C_0(\mathcal{T})$$
 is FP_n .

- $C_1(\mathcal{T})$ is FP_{∞} .
- So \mathbb{Z} is FP_n by the Bieri-Brown-Strebel theorem.
- Thus M is of type FP_n .

Homological finiteness properties

Special monoids

The end

Thank you for your attention!