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Ancient history

• In 1932 Magnus solved the word problem for one-relator
groups.

• Inspired by his results, people considered the word
problem for other one-relator algebraic structures.

• In 1962, Shirshov solved the word problem for one-relator
Lie algebras.

• The word problem for one-relator monoids remains open.

• The problem: given M = 〈A | u = v〉, decide whether two
words over A represent the same element of M .

• There has been lots of work by people like Adjan,
Lallement, Oganesyan, Guba, Howie and Pride.
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What is known and why it is hard

• Adjan solved the word problem for cancellative one-relator
monoids and those with defining relation w = 1 in the 60s.

• These cases reduce to Magnus’s theorem.
• Most of the remaining results reduce the word problem
from presentations with longer relations to shorter ones.

• Matiyasevich (1967) constructed a 2-generator, 3-relator
monoid with undecidable word problem.

• Borisov gave a 12-relator group presentation with
undecidable word problem based on Matiyasevich’s
example.

• Ivanov, Margolis and Meakin reduced the one-relator
monoid word problem to the one-relator inverse monoid
word problem with relation w = 1.

• Gray showed the word problem is undecidable for inverse
monoids with defining relation w = 1.
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Kobayashi’s question

• When we can’t solve a problem in math, we study variants
of it.

• Kobayashi asked whether the word problem for one-relator
monoids can be solved by a particularly nice algorithm.

Question (Kobayashi (2000))

Does every one-relator monoid admit a finite complete
rewriting system?

• A complete rewriting system (CRS) is a presentation
where you can solve the word problem as in the free group.

• Replacing left hand sides by right hand sides of a relation,
will always result in a unique reduced word in finitely
many steps.

• A finite CRS yields decidable word problem.
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More on Kobayashi’s question

• It is an open question if one-relator groups admit a finite
CRS.

• It is an open question to decide whether a one-relator
presentation is already complete.

• To prove that a monoid does not admit a finite CRS, we
need invariants that can detect this.

• Homological finiteness is a popular such invariant.
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Homological finiteness properties

• Homological finiteness properties for groups were
introduced by Bieri in the 70s.

• The extension to monoids is straightforward and was
studied in the 80s by:
1. Bieri and Renz to introduce higher Σ-invariants of groups;

2. Squier and Anick to study complete rewriting systems.

• Let M be a monoid and ZM its monoid ring.

• Z is the trivial module.

• M is of type FPn with 0 ≤ n ≤ ∞ if there is a free
resolution

· · · → F1 → F0 → Z

with Fi finitely generated for 0 ≤ i ≤ n.
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Warning: monoids are not ambidextrous

• The above definition is incomplete.

• We must specify if we use left or right modules.

• There are two distinct notions: left and right FPn.

• Since the classes of monoids in this talk are left/right
dual, we can get away with considering only left modules.

• The right hand versions then follow by duality.
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Key facts

• Every finitely generated monoid is FP1.

• Every finitely presented monoid is FP2.

• Neither converse holds.

• Stallings gave the first finitely presented group that is not
FP3.

• Bieri gave finitely presented groups that are FPn but not
FPn+1 for all n ≥ 2.

Theorem (Anick)

If M has a finite CRS, then M is FP∞.

• This improves an earlier result of Squier for FP3.

• To prove M has no finite CRS, it suffices to show M is
not FPn for some n > 2.
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Lyndon’s identity theorem

• Lyndon (1950) gave an explicit free resolution of Z for
one-relator groups.

• An immediate consequence is the following theorem.

Theorem (Lyndon)

Let G be a one-relator group.

1. G is FP∞.

2. cd(G) ≤ 2 unless the relator is a proper power (i.e., G
has torsion), in which case cd(G) = ∞.

• The cohomological dimension of a monoid is the length of
a shortest free resolution of Z.
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Another question of Kobayashi

Question (Kobayashi (2000))

Is every one-relator monoid of type FP∞?

• Anick’s theorem provides the connection between this
question and his previous one.

• Kobayashi (2000) proved one-relator monoids are FP3.

Theorem (Gray, BS)

Every one-relator monoid is of type FP∞.

• We have a fairly good, but still incomplete, understanding
of cohomological dimension of one-relator monoids.
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Topological methods

• Geometric group theorists use topology to establish
homological finiteness properties.

• Wall approach: Construct an Eilenberg-Mac Lane space
for G with appropriate finiteness properties.

• Brown approach: Find a ‘nice’ action of G on a
contractible CW complex such that the cell stabilizers
have appropriate finiteness properties.

• For monoids people typically establish homological
finiteness properties by writing down explicit free
resolutions.

• We introduce monoid analogues of both the Wall and
Brown approaches.

• Our approach builds actions of one-relator monoids on
contractible CW complexes whose associated cellular
chain complexes provide resolutions of the trivial module.
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Other tools

• We use Adjan-Oganesyan compression to work by
induction on the size of the relator.

• We then must deal with incompressable one-relator
presentations.

• One family was handled by Kobayashi.

• The rest of this talk is about the other base case.

• The inductive step will have to await another talk...
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Special monoids

• A special monoid presentation is one of the form:

M = 〈A | w1 = 1, . . . , wk = 1〉.

• Any group is a special monoid.

• Any special monoid is either free or has non-trivial
left/right invertible elements.

• So N× N is not special.

• For example, in B = 〈a, b | ab = 1〉, a is right invertible
and b is left invertible.

• Neither is invertible.
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Results on special monoids

• Adjan (1960) proved the group of units of a special
one-relator monoid is a one-relator group.

• He reduced the word problem to that of the group and
invoked Magnus.

• Makanin (1966) proved the group of units G of a
k-relator special monoid M is a k-relator group.

• He reduced the word problem of M to that of G.

• Zhang, in the 90s, gave an elegant approach to these
results using infinite complete rewriting systems.

• He gave many structural results.

• He proved the monoid of right invertible elements of M is
a free product of G with a finitely generated free monoid.
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The main theorem

Theorem (Gray, BS)

Let M be a special monoid with group of units G.

1. If G is FPn, then M is FPn.

2. cd(G) ≤ cd(M) ≤ max{2, cd(G)}.

Corollary (Gray, BS)

Let M be a special one-relator monoid.

1. M is FP∞.

2. cd(M) ≤ 2 unless the relator is a proper power, in which
case cd(M) = ∞.

• Kobayashi obtained this for the case the relator is not a
proper power.

• In general, homological properties of a monoid and its
group of units are unrelated.
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Idea of the proof

• We use the Brown approach to prove our main theorem.

• We construct an action of the special monoid on a tree.

• We use the chain complex of the tree to build a non-free
resolution of Z.

• We use Brown’s method to replace the non-free resolution
by one whose finiteness properties are controlled by G.
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Cayley graph of a free monoid

M = {a, b}∗.

ε

a

aa

...
...

ab

...
...

b

ba

...
...

bb

...
...

Free resolution:

0 −→ ZM2 −→ ZM −→ Z −→ 0

So M is FP∞ and cd(M) = 1.
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Cayley graph of the bicyclic monoid

B = 〈a, b | ab = 1〉.

1

...
...

· · ·
a

a b

b

b

a

a b

b

b

All strong components isomorphic; each component has
unique entrance; each vertex of the component is a unique
right translate of the entrance by a right invertible element;
the cone is identical from each entrance; contracting strong
components yields a tree.
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Tree of strong components for the bicyclic monoid

B = 〈a, b | ab = 1〉.

1 · · ·
b b

• b acts by a right shift.

• a acts by a left shift but crushes the first edge to the
vertex 1.
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Geometry of special monoids

• Let M be a special monoid with Cayley graph Γ.

• The strong components of Γ are all isomorphic.

• Each strong component has a unique entrance (unique
closest element to 1).

• The cone at each entrance is isomorphic to the whole
Cayley graph.

• Each vertex of a strong component is a unique right
translate of the entrance by a right invertible element.

• Identifying each strong component to a point yields a
regular rooted tree T .

• M acts on T by simplicial maps.

• The M-action might crush edges of T .
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FPn for modules

• Let R be a ring.

• An R-module N is of type FPn with 0 ≤ n ≤ ∞ if there
is a free resolution

· · · → F1 → F0 → N

with Fi finitely generated for 0 ≤ i ≤ n.

Theorem (Bieri, Brown, Strebel)

If
· · · → N1 → N0 → N

is a resolution of N with Ni of type FPn−i for 0 ≤ i ≤ n,
then N is FPn.
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The resolution from the tree T

• Let M be a special monoid with group of units G.

• Assume that G is FPn.

• Let R be the submonoid of right invertible elements.

• R = G ∗ F where F is a finitely generated free monoid.

• Let T be the tree of strong components of the Cayley
graph Γ.

• We have a resolution from simplicial chain groups

0 −→ C1(T ) −→ C0(T ) −→ Z −→ 0

• To get M is FPn we need C0(T ) is FPn and C1(T ) is
FPn−1.
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The 0-chain group

• The vertices of T are the strong components of Γ.

• Each m ∈ M can be uniquely written br where b is an
entrance and r ∈ R.

• So ZM is a free right ZR-module with basis the set of
entrances (in bijection with strong components of Γ).

• Thus ZM ⊗ZR Z is a free abelian group with basis in
bijection with the strong components of Γ.

• The M-action on ZM ⊗ZR Z is the action of M on the
strong components under this identification.

• So C0(T ) ∼= ZM ⊗ZR Z.



Background Homological finiteness properties Special monoids

Resolving the 0-chains

• Recall C0(T ) ∼= ZM ⊗ZR Z.

• The functor ZM ⊗ZR (−) is exact (since ZM is a free
right ZR-module) and sends ZR to ZM .

• So if F• → Z is a free resolution of Z over ZR, then
ZM ⊗ZR F• is a free resolution of ZM ⊗ZR Z ∼= C0(T ).

• The rank of ZM ⊗ZR Fi is the same as the rank of Fi.

• So C0(T ) is FPn if R is FPn.

• But R = G ∗ F with F a finitely generated free monoid.

• The class of FPn monoids is closed under free product
(Cremmens-Otto).

• Since G is FPn and F is FP∞, we have R is FPn.
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The 1-chain group

• The edges of T are the edges of Γ not belonging to a
strong component.

• Let N be the free abelian group on the edges of Γ
belonging to some strong component.

• Then N ≤ C1(Γ) is a ZM-submodule.
• C1(T ) ∼= C1(Γ)/N .
• Note that C1(Γ) is a free ZM-module with basis the

edges 1
a
−→ a.

• The set E of edges of Γ is a free M-set.
• N has Z-basis an M-invariant subset of E.
• We proved any invariant subset of a free M-set is free.
• So N is a free ZM-module.
• We showed it is finitely generated.
• So 0 −→ N −→ C1(Γ) −→ C1(T ) −→ 0 is a free
resolution and hence C1(T ) is FP∞.
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Cayley graph of the bicyclic monoid: revisited

B = 〈a, b | ab = 1〉.
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The blue edges freely generate the submodule of strong
component edges.
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Conclusion

• In summary, we have the resolution

0 −→ C1(T ) −→ C0(T ) −→ Z −→ 0

• C0(T ) is FPn.

• C1(T ) is FP∞.

• So Z is FPn by the Bieri-Brown-Strebel theorem.

• Thus M is of type FPn.
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The end

Thank you for your attention!
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