Min network of congruences on an inverse semigroup

Ying-Ying Feng

Foshan University, Guangdong, P. R. China

eNBSAN, 8th July, 2020

This is joint work with Li-Min Wang, Lu Zhang, Hai-Yuan Huang and Zhi-Yong Zhou.

Outline

Notations & terminologies

2 Congruence networks on inverse semigroups

3 Some future work

Various classes of semigroups

$$\mathcal{SL} \subseteq \mathcal{I}, \ \mathcal{B} \cap \mathcal{I} = \mathcal{SL}, \ \cdots$$

- regular semigroup $(\forall a \in S)(\exists x \in S) \ axa = a$

- inverse semigroup every element of S has a unique inverse
 - S is regular, and its idempotents commute
- completely regular semigroup
 - every element of S lies in a subgroup of S

- band
- every element of S is idempotent
- semilattice commutative idempotent semigroup
- Clifford semigroup S is regular and the idempotents of S are central
 - a semilattice of groups
- *E*-unitary semigroup $-(\forall e \in E_S)(\forall s \in S) \ es \in E_S \Rightarrow s \in E_S$

congruence

— a compatible equivalence relation

$$(\forall s,t,s',t'\in \mathcal{S}) \ [(s,t)\in
ho \ \text{and} \ (s',t')\in
ho] \Rightarrow (ss',tt')\in
ho$$

- both a left and a right congruence

$$(\forall s,t,a\in S)\ (s,t)\in
ho \Rightarrow (as,at)\in
ho,\ (sa,ta)\in
ho$$

- semigroup $S \xrightarrow{\text{congruence } \rho} \text{quotient semigroup } S/\rho$
- significance
 - obtain information on internal structure and homomorphic images
 - 'All the important structure theorems for inverse semigroups are based on various special congruences.'

¹Petrich, M.: *Inverse semigroups*. Wiley, New York (1984)

- significance
 - obtain information on internal structure and homomorphic images
 - 'All the important structure theorems for inverse semigroups are based on various special congruences.'²
 - ✓ S is an E-unitary inverse semigroup $\iff \sigma \cap \mathcal{L} = \varepsilon$ $S = \mathcal{M}(G, \mathcal{X}, \mathcal{Y}) = \{(A, g) \in \mathcal{Y} \times G \mid g^{-1}A \in \mathcal{Y}\}$ $\mathcal{Y} = S/\mathcal{L}, \ G = S/\sigma$ ✓ S is a Clifford semigroup $\iff \mu = \eta$ $S = [Y; G_{\alpha}, \phi_{\alpha,\beta}]$ $Y = S/\eta = S/\mathcal{J}$

²Petrich, M.: *Inverse semigroups*. Wiley, New York (1984)

kernel-trace approach

Let ρ be a congruence on S,

$$\operatorname{tr} \rho = \rho|_{E_S}, \qquad \ker \rho = \{x \in S \, | \, (\exists e \in E_S) \, x \, \rho \, e\}.$$

Result

Let ρ be a congruence on S. Then

$$a \rho b \iff a^{-1}a \operatorname{tr} \rho b^{-1}b, \ ab^{-1} \in \ker \rho.$$

 \bullet \mathcal{T} , \mathcal{K} -relation

Let
$$\rho, \theta \in \mathcal{C}(S)$$
,

$$\rho \mathcal{T} \theta \iff \operatorname{tr} \rho = \operatorname{tr} \theta, \qquad \rho \mathcal{K} \theta \iff \ker \rho = \ker \theta.$$

kernel-trace approach

$$\operatorname{tr} \rho = \rho|_{E_S}, \qquad \ker \rho = \{x \in S \,|\, (\exists e \in E_S) \,x \,\rho \,e\}.$$

• T. K-relation

$$\rho\,\mathcal{T}\,\theta \iff \operatorname{tr}\rho = \operatorname{tr}\theta, \qquad \rho\,\mathcal{K}\,\theta \iff \ker\rho = \ker\theta.$$

Result

For any
$$\rho \in \mathcal{C}(S)$$
, $\rho \mathcal{T} = [\rho_t, \, \rho^T]$, $\rho \mathcal{K} = [\rho_k, \, \rho^K]$, where
$$a \, \rho_t \, b \iff ae = be \, \text{ for some } e \in E_S, e \, \rho \, a^{-1} a \, \rho \, b^{-1} b,$$

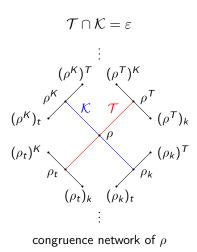
$$a \, \rho^T \, b \iff a^{-1} e a \, \rho \, b^{-1} e b \, \text{ for all } e \in E_S,$$

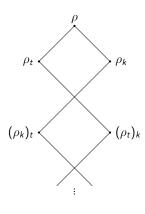
$$\rho_k = (\rho \cap \mathcal{L})^*,$$

$$a \, \rho^K \, b \iff [xay \in \ker \rho \iff xby \in \ker \rho \, \text{ for all } x, y \in S^1].$$

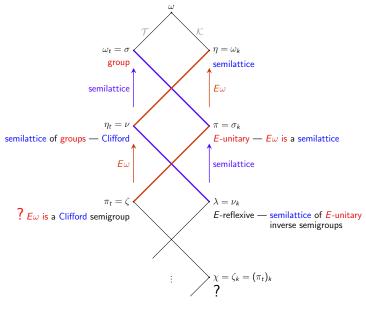
- kernel-trace approach
- T, K-relation
- congruence networks
 - single out various classes of semigroups of particular interest
 - structure

Congruence network





 $\quad \text{min network of } \rho$



min network of ω

Proposition

The following conditions on an inverse semigroup S are equivalent.

- (1) S is an $E\omega$ -Clifford semigroup; (2) $\sigma \cap \mathcal{L}$ is a congruence;
- (3) $\sigma \cap \mathcal{R}$ is a congruence;
- $(4) \ \sigma \cap \mathcal{L} = \sigma \cap \mathcal{R};$
- (5) $\sigma \cap \mathcal{L} = \sigma \cap \mu$; (6) there exists an idempotent
- separating E-unitary congruence on S;
- (7) $\pi \subseteq \mu$;
- (8) $\pi_t = \varepsilon$;
- (9) $e\sigma$ is a Clifford semigroup for every $e \in E(S)$;
- (10) S satisfies the implication $xy = x \Rightarrow y \in E(S) \zeta$;
- (11) $E(S) \omega \subseteq E(S) \zeta$; (12) $\pi \cap \mathcal{F} = \varepsilon$.

Proposition

The following statements concerning a congruence ρ on an inverse semigroup S are equivalent.

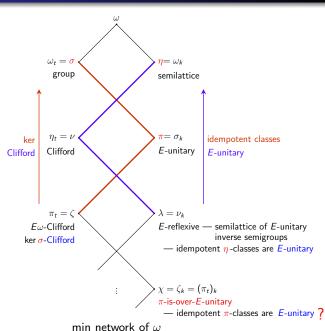
(1) ρ is an $E\omega$ -Clifford congruence; (2) $\pi_{\rho} \subseteq \rho^{T}$, where π_{ρ} is the least

(2) $\pi_{\rho} \subseteq \rho^{*}$, where π_{ρ} is the least E-unitary congruence on S containing

 ρ ;

(3) $\operatorname{tr} \pi_{\rho} = \operatorname{tr} \rho$.

Wang, L. M., Feng, Y. Y.: Eω-Clifford congruences and Eω-E-reflexive congruences on an inverse semigroup. Semigroup Forum 82, 354–366 (2011)



► Feng, Y. Y., Wang, L. M., Zhang, L., Huang, H. Y.: A new approach to a network of congruences on an inverse semigroup. Semigroup Forum 99, 465–480 (2019)

Definition

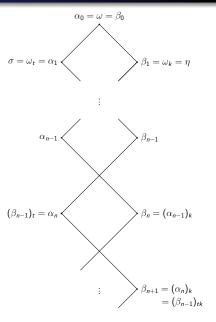
On S we define inductively the following two sequences of congruences:

$$\alpha_0 = \omega = \beta_0;$$

$$\alpha_n = (\beta_{n-1})_t, \quad \beta_n = (\alpha_{n-1})_k,$$
for $n \ge 1$.

We call the aggregate $\{\alpha_n, \beta_n\}_{n=0}^{\infty}$, together with the inclusion relation for

congruences, the \min network of ω on ${\cal S}.$



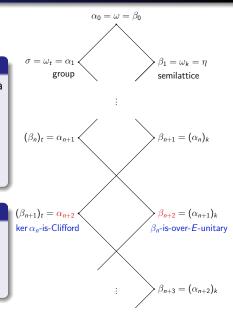
min network of ω

Definition

An inverse semigroup for which $\ker \alpha_n$ is a Clifford semigroup is called a $\ker \alpha_n$ -is-Clifford semigroup. An inverse semigroup S is called a β_n -is-over-E-unitary semigroup if $e\beta_n$ is E-unitary for each $e\in E_S$.

Theorem

- (1) α_{n+2} is the least ker α_n -Clifford congruence on S;
- (2) β_{n+2} is the least β_n -is-over-E-unitary congruence on S.



min network of ω

ker α_n -is-Clifford semigroups and β_n -is-over-E-unitary semigroups

Proposition

For $n \ge 1$, the following conditions on an inverse semigroup S are equivalent:

- (1) S is a ker α_n -is-Clifford semigroup;
- (2) $[a \alpha_n b \text{ and } a^{-1}a \leq b^{-1}b] \Longrightarrow$ $aa^{-1} < bb^{-1}$;
- (3) $\alpha_n \cap \mathcal{L} = \alpha_n \cap \mathcal{R}$;
- (4) $\alpha_n \cap \mathcal{L}$ is a congruence;
- (5) $\alpha_n \cap \mathcal{R}$ is a congruence;
- (6) $\alpha_n \cap \mathcal{L} = \alpha_n \cap \mu$;

(7) there exists an idempotent separating β_{n-1} -is-over-E-unitary congruence on S;

- (8) $\beta_{n+1} \subseteq \mu$; (9) $(\beta_{n+1})_t = \varepsilon$;
- (10) $\beta_{n+1} \cap \mathcal{F} = \varepsilon$; (11) ker $\alpha_n \subseteq E_s \zeta$; (12) S satisfies the implication xy = x,
- $x^{-1}x \alpha_n vv^{-1} \Rightarrow v \in E_s \zeta$.

Proposition

For $n \ge 1$, the following conditions on an inverse semigroup S are equivalent:

- (1) *S* is a β_n -is-over-*E*-unitary semigroup;
- (2) $\beta_n \cap \mathcal{F}$ is a congruence;
- (3) $\beta_n \cap \mathcal{C}$ is a congruence;
- (4) $\beta_n \cap \mathcal{F} = \beta_n \cap \tau$;
- (5) $\beta_n \cap \mathcal{C} = \beta_n \cap \tau$; (6) there exists an idempotent pure
- $\ker \alpha_{n-1}$ -is-Clifford congruence on S;
- (7) $\alpha_{n+1} \subseteq \tau$; (8) $\alpha_{n+1} \cap \mathcal{L} = \varepsilon$; (9) $(\alpha_{n+1})_k = \varepsilon$; (10) $\operatorname{tr} \beta_n \subset \operatorname{tr} \tau$;
- (11) S satisfies the implication

xy = x, $x^{-1}x \alpha_{n+1} yy^{-1} \Rightarrow y \in E_s$.

ker α_n -is-Clifford congruences and β_n -is-over-E-unitary congruences

Proposition

congruence;

For $n \geqslant 1$, the following statements concerning a congruence ρ on an inverse semigroup S are equivalent: (1) ρ is a ker α_n -is-Clifford

(2) $(\beta_{n+1})_{\rho} \subseteq \rho^{T}$, where $(\beta_{n+1})_{\rho}$ is the least β_{n-1} -is-over-Eunitary congruence on S containing ρ ;

(3) $\operatorname{tr}(\beta_{n+1})_{\rho} = \operatorname{tr} \rho$.

Proposition

For $n \geqslant 1$, the following statements concerning a congruence ρ on an inverse semigroup S are equivalent:

(1) ρ is a β_n -is-over-E-unitary congruence;

(2) $(\alpha_{n+1})_{\rho} \subseteq \rho^{K}$, where $(\alpha_{n+1})_{\rho}$ is the least ker α_{n-1} -is-Clifford congruence on S containing ρ ; (3) $\ker (\alpha_{n+1})_{\rho} = \ker \rho$.

$\mathsf{Theorem}$

 α_{n+2} is the least ker α_n -Clifford congruence on S.

Theorem

 β_{n+2} is the least β_n -is-over-E-unitary congruence on S.

Quasivarieties

Definition (Petrich - Reilly, 1982)

An inverse semigroup ${\cal S}$ might satisfy one of the following implications:

$$(A_0) x = y;$$
 $(A_1) x^{-1}x = y^{-1}y;$

$$(A_2) y \in E\zeta;$$

$$(\mathsf{A}_n) \ xy = x, \ x \, \beta_{n-3} \, y \Rightarrow y \in \mathsf{E}\zeta,$$
$$n \geq 3$$

$$(B_0) x = y; \quad (B_1) y \in E;$$

$$(B_n) xy = x, x \beta_{n-2} y \Rightarrow y \in E,$$

$$n \geqslant 2$$
.

Definition

An inverse semigroup S might satisfy one of the following implications:

$$(A'_0) \ x = y; \quad (A'_1) \ x^{-1}x = y^{-1}y; (A'_2) \ y \in E\zeta;$$

$$(A'_n) xy = x, x^{-1}x \alpha_{n-2} yy^{-1} \Rightarrow y \in E\zeta, n \geqslant 3;$$

$$(B'_n) x = y; \quad (B'_1) y \in E;$$

$$(\mathsf{B}'_n) \ xy = x, \ x^{-1}x \ \alpha_{n-1} \ yy^{-1} \Rightarrow y \in E, \ n \geqslant 2.$$

Theorem (Petrich - Reilly, 1982)

(1) α_n is the minimum congruence ρ on S such that S/ρ satisfies (A_n) ; (2) β_n is the minimum congruence ρ on S such that S/ρ satisfies (B_n) .

Theorem

- (1) α_n is the minimum congruence ρ on S such that S/ρ satisfies (A'_n) ; (2) β_n is the minimum congruence ρ
- on S such that S/ρ satisfies (B'_n) .

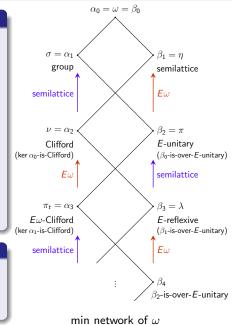
Theorem

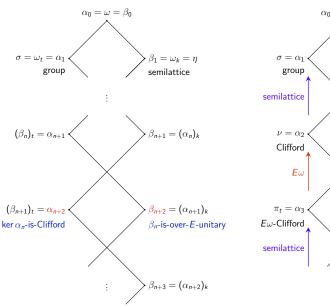
Let n be a non-negative integer. The following statements are valid in any inverse semigroup S.

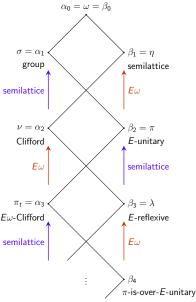
- (1) Every η -class of S/β_{2n+3} is a β_{2n} -is-over-E-unitary semigroup;
- (2) every η -class of $S/\alpha_{2(n+2)}$ is a ker α_{2n+1} -is-Clifford semigroup;
- (3) $(E_{S/\alpha_{2n+3}})\omega$ is a ker α_{2n} -is-Clifford semigroup;
- (4) $(E_{S/\beta_{2(n+2)}})\omega$ is a β_{2n+1} -is-over-Eunitary semigroup.

Theorem

- (1) α_{n+2} is the least ker α_n-Clifford congruence on S:
- (2) β_{n+2} is the least β_n -is-over-E-unitary congruence on S.

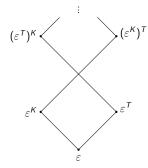


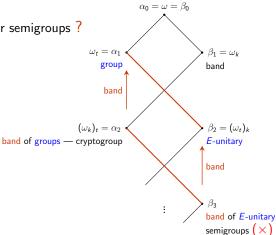




Some future work

- Pattern suitable for others ?
 - In general, NO!
 - Completely regular semigroups?
- Max network of ε ?





min network of ω on regular semigroups

Bibliography

Billhardt, B.:

On inverse semigroups the closure of whose set of idempotents is a Clifford semigroup.

Semigroup Forum 44, 320-331 (1992)

Pastijn, F., Petrich, M.:

The congruence lattice of a regular semigroup.

J. Pure Appl. Algebra 53, 93-123 (1988)

Petrich, M.:

Inverse Semigroups.

Wiley, New York (1984)

Petrich, M.:

Congruences on Inverse Semigroups.

J. Algebra 55, 231-356 (1978)

Petrich, M., Reilly, N. R.:

A network of congruences on an inverse semigroup.

Trans. Amer. Math. Soc. 270, 309-325 (1982)

Thank you!

