# The prefix membership problem for one-relator groups, and its semigroup-theoretical cousins 

Igor Dolinka<br>dockie@dmi.uns.ac.rs

Department of Mathematics and Informatics, University of Novi Sad

The eNBSAN Online Meeting 2020
CyberSpace, 24 June 2020


## Starring



Robert D. Gray
(Uni of East Anglia, Norwich)


Lt. Col. Frank Slade (US Army, retired)

## Also starring



UEA campus bunnies
(providing the much-required positivity...)

## Intro \& Some History



## The word problem (in groups, monoids,...)

Assume we have given a (finitely generated) group $G=\langle X\rangle$ (e.g. by a presentation, etc.). So, elements of $G$ are represented by words over $\bar{X}=X \cup X^{-1}$.

For starters, we'd very much like to know if two words represent the same element of $G$, and, in addition, is there an algorithm (think: computer program) which decides this.

The word problem for $G$ :
INPUT: A word $w \in \bar{X}^{*}$.
QUESTION: Does $w$ represent the identity element 1 in $G$ ?
Similarly, one can ask about the word problem for monoids / inverse monoids / ..., with the difference being that the input requires two words $u, v$, and then we're keen to decide if $u=v$ holds in the corresponding monoid.

The beginning of the story: Back to the Great Depression


The beginning of the story: back to the Great Depression


## The beginning of the story: back to the Great Depression



Das Identitat-problem fir Gruppen mit einer definierenden Relation.

## W. Magnus io ceitiogen

## Einleitune.

Fe sei cine Gruppe gegeben durch gewise (endlich oder abzihibar undilih viele) erseugende Elemento $a_{1}, a_{3}, a_{3}, \ldots$ und gewisse zwischen


$$
R_{2}\left(d_{1}, a_{2}, a_{3}, \ldots\right)=1
$$

$$
(k=1,2,3, \ldots)
$$

Jelier aus den Erzeugenden $a_{1}, a_{3}, a_{3}, \ldots$ und ihren Rezjproken $4_{1}^{-1} a_{1}^{-1}, a_{a}^{-1} \ldots$ gebildete endlithe Awsdruck (jedes .Wort ${ }^{-}$, wie wir sagen vilha) repriaentiert dann ein Element der Gruppe; aber nicht is einGatigen Weise: vicimehr liabt sich jedes Element suf unendlich viele Weisen tuxh Worle mephisentieren. Das Identitits: oder Wortproblem ist non dietulgabs, ein Verfalisen zu fioden, um vot zwei beliehigen Worten $W_{1}$ und If, in madich vielen scliritten- zu eatscheiden, ob sie dssolbe GruppenEkast reprisentieren, oder, was dasselbe ist, um von einem belitbigen
Finst roprisentieren, oder, was dasselbe ist, um von einem beliebigen
Fividen, ob es gleich eins ist oder richt.
It entscleviden, ob es gleich eins ist oder richt.
Dhe Identithtsproblem ist esstens unmittelhar für die Topologie von ${ }^{4}$ bestuggt ; aber zweitens int es wohl uberhappt fir die Unterauchung

## Gimme some old time rock'n'roll

Theorem (W. Magnus, 1932)
Every one-relator group has decidable word problem.
Theorem (Magnus, 1930, "Der Freiheitssatz")
$w \in \bar{X}^{*} \& A \subset X$ :

- cyclically reduced;
- contains an occurrence of a letter not in A;
$\Longrightarrow$ the subgroup of $\mathrm{Gp}\langle X \mid w=1\rangle$ generated by $A$ is $\underline{\text { free. }}$
"Da sind Sie also blind gegangen!"
Max Dehn (Magnus' PhD advisor)
Theorem (Shirshov, 1962)
Every one-relator Lie algebra has decidable word problem.


## The one-relator monoid Riddle

Open Problem (still! - as of 2020)
Is the word problem decidable for all one-relator monoids $\operatorname{Mon}\langle X \mid u=v\rangle$ ?

Theorem (Adyan, 1966)
The word problem for $\operatorname{Mon}\langle X \mid u=v\rangle$ is decidable if either:

- one of $u, v$ is empty (e.g. $u=1$ - special monoids), or
- both $u, v$ are non-empty, and have different initial letters and different terminal letters.

Lallement (1977) and L. Zhang (1992) provided alternative proofs for the result about special monoids. The proof of Zhang is particularly compact and elegant.

NB. RIP S. I. Adyan (1 January 1931 - 5 May 2020).

## The connection to the inverse realm

Adyan \& Oganessyan (1987): The word problem for one-relator monoids can be reduced to the special case of

$$
\operatorname{Mon}\langle X \mid a s b=a t c\rangle
$$

where $a, b, c \in X, b \neq c$ and $s, t \in X^{*}$ (and their duals).
So, where do (one-relator) inverse monoids come into the picture?
Theorem (Ivanov, Margolis \& Meakin, 2001)
If the word problem is decidable for all special inverse monoids $\operatorname{Inv}\langle X \mid w=1\rangle$ - where $w$ is a reduced word over $\bar{X}$ - then the word problem is decidable for every one-relator monoid.

This holds basically because $M=\operatorname{Mon}\langle X \mid a s b=a t c\rangle$ embeds into $I=\operatorname{Inv}\left\langle X \mid a s b c^{-1} t^{-1} a^{-1}=1\right\rangle$.

## The plot thickens

|  | $\operatorname{Gp}\langle X \mid w=1\rangle$ | $\operatorname{Mon}\langle X \mid w=1\rangle$ | $\operatorname{Inv}\langle X \mid w=1\rangle$ |
| :---: | :---: | :---: | :---: |
| decidable WP | $\boldsymbol{J}$ | $\boldsymbol{J}$ | $? \boldsymbol{X}$ |
|  | (Magnus, 1932) | (Adyan, 1966) | (Gray, 2019) |

Conjecture (Margolis, Meakin, Stephen, 1987)
Every inverse monoid of the form $\operatorname{Inv}\langle X \mid w=1\rangle$ has decidable word problem.

Theorem (RD Gray, 2019; Invent. Math., March 2020)
There exists a one-relator inverse monoid $\operatorname{Inv}\langle X \mid w=1\rangle$ with undecidable word problem.


## Inverse monoid basics (1): Definitions \& FIM

Inverse monoid $=$ a monoid $M$ such that for every $a \in M$ there is a unique $a^{-1} \in M$ such that $a a^{-1} a=a$ and $a^{-1} a a^{-1}=a^{-1}$.

Inverse monoids form a class of unary monoids defined by the laws

$$
\begin{gathered}
x x^{-1} x=x, \quad\left(x^{-1}\right)^{-1}=x, \quad(x y)^{-1}=y^{-1} x^{-1} \\
x x^{-1} y y^{-1}=y y^{-1} x x^{-1}
\end{gathered}
$$

Free inverse monoid FIM $(X)$ : Munn, Scheiblich (1973/4)


Elements of $\operatorname{FIM}(X)$ are represented as Munn trees $=$ birooted finite subtrees of the Cayley graph of $F G(X)$. The Munn tree on the left illustrates the equality

$$
a a^{-1} b b^{-1} b a^{-1} a b b^{-1}=b b b^{-1} a^{-1} a b^{-1} a a^{-1} b
$$

## Inverse monoid basics (2): The E-unitary property

E-unitary inverse semigroups $=$ the well-behaved, "nice guys".
For example, here are several (equivalent) definitions:

- For any $e \in E(S)$ and $x \in S$, $e \leq x$ (in the natural inverse semigroup order) $\Rightarrow x \in E(S)$.
- The minimum group congruence $\sigma$ on $S$ is idempotent-pure, which means that $E(S)$ constitutes a single $\sigma$-class.
- $\sigma=\sim$, where $\sim$ is the compatibility relation defined by $a \sim b \Leftrightarrow a^{-1} b, a b^{-1} \in E(S)$.

Theorem (Ivanov, Margolis \& Meakin, 2001)
If $w$ is cyclically reduced, then $M=\operatorname{lnv}\langle X \mid w=1\rangle$ is $E$-unitary.

## The key role of the prefix monoid

Consider a one-relator group $G$ given by $\operatorname{Gp}\langle X \mid w=1\rangle$.
$P_{w}=$ the submonoid of $G$ generated by all the prefixes of $w$.
This is the prefix monoid of $G$.
(Caution: depends on the presentation!)
Prefix membership problem for $G=G p\langle X \mid w=1\rangle=$ membership problem for $P_{w}$ within $G$.

Theorem (Ivanov, Margolis \& Meakin, 2001)
If $M=\operatorname{lnv}\langle X \mid w=1\rangle$ is $E$-unitary, then
word problem for $M=$ prefix membership problem for $G=G p\langle X \mid w=1\rangle$.
Remark
$G=\operatorname{Gp}\langle X \mid w=1\rangle$ is the maximum group image of $M=\operatorname{lnv}\langle X \mid w=1\rangle$.

## A Glimpse into the Toolbox



Membership problem (for a submonoid $M$ of a group $G$ )


Submonoid membership problem for $G$ : Is there an algorithm which, given $u, w_{1}, w_{2}, \cdots \in \bar{X}^{*}$, decides if $u \in \operatorname{Mon}\left\langle w_{1}, w_{2}, \ldots\right\rangle$ ?

Rational subsets in groups


## RSMP + Benois

Rational subset membership problem for a group $G=\langle X\rangle$ :
INPUT: A word $w \in \bar{X}^{*}$ and a regular expression $\alpha$ over $\bar{X}$.
QUESTION: $w \in A_{\alpha}$ ?
(Here $A_{\alpha} \subseteq G$ is the image of $\mathscr{L}(\alpha)$, as in the previous pic.)
Theorem (Benois, 1969)
Every finitely generated free group has decidable RSMP.
Consequently, rational subsets of f.g. free groups are closed for intersection and complement.

## Factorisations

In this slide we consider factorisations $w \equiv w_{1} \ldots w_{m}$.
It is unital w.r.t. $M=\operatorname{lnv}\langle X \mid w=1\rangle$ if each piece $w_{i}$ represents an invertible element (i.e. unit, $a a^{-1}=a^{-1} a=1$ ) of $M$.
Lemma
Unital fact. $\Longrightarrow P_{w} \leq G=G p\langle X \mid w=1\rangle$ is generated by $\bigcup_{i=1}^{m} \operatorname{pref}\left(w_{i}\right)$.
In fact, for any factorisation of $w$ we can consider the submonoid $M\left(w_{1}, \ldots, w_{m}\right)$ of $G$ generated by $\bigcup_{i=1}^{m} \operatorname{pref}\left(w_{i}\right)$. In $G$, we have

$$
P_{w} \subseteq M\left(w_{1}, \ldots, w_{m}\right) .
$$

If $=$ holds, the considered factorisation is called conservative.

## Theorem

(i) Any unital factorisation is conservative. (aka previous Lemma)
(ii) If $M=\operatorname{lnv}\langle X \mid w=1\rangle$ is $E$-unitary then every conservative factorisation if unital.

## Amalgamated free product of groups $B *_{A} C$



## HNN extension of a group $G *_{t, \phi: A \rightarrow B}$



## The Results



## Theorem A

$G=B *_{A} C(A, B, C$ finitely generated $):$

- $B, C$ have decidable word problems;
- the membership problem for $A$ is decidable in both $B$ and $C$.

Let $M$ be a submonoid of $G$ with the following properties:
(i) $A \subseteq M$;
(ii) $M \cap B$ and $M \cap C$ are f.g. and $M=\operatorname{Mon}\langle(M \cap B) \cup(M \cap C)\rangle ;$
(iii) the membership problem for $M \cap B$ in $B$ is decidable;
(iv) the membership problem for $M \cap C$ in $C$ is decidable.


Then the membership problem for $M$ in $G$ is decidable.

## Rational intersections

$H \leq G$ closed for rational intersections:

$$
R \in \operatorname{Rat}(G) \Longrightarrow R \cap H \in \operatorname{Rat}(G)
$$

$H \leq G$ effectively closed for rational intersections: there is an algorithm which does the following
INPUT: A regular expression for $R \in \operatorname{Rat}(G)$.
OUTPUT: Computes a regular expression for $R \cap H$.

## Theorem B

$G=B *_{A} C(A, B, C$ finitely generated $):$

- $B, C$ have decidable rational subset membership problems;
- $A \leq B$ is effectively closed for rational intersections;
- $A \leq C$ is effectively closed for rational intersections.

Let $M$ be a submonoid of $G$ such that $M \cap B$ and $M \cap C$ are f.g. and

$$
M=\operatorname{Mon}\langle(M \cap B) \cup(M \cap C)\rangle .
$$



Then the membership problem for $M$ in $G$ is decidable.

## Application \#1: Unique marker letters

Theorem

- $G=\operatorname{Gp}\langle X \mid w=1\rangle$
- $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ - a conservative factorisation of $w$
- $\forall i \in[1, k]$ : there is a letter $x_{i}$ appearing exactly once in $w_{i}$ and not appearing in any $w_{j}, j \neq i$
$\Longrightarrow G$ has decidable prefix membership problem.
Example
The group
$=\mathrm{Gp}\langle a, b, x, y| a x b a y b a y b a x b a y b a x b=1(a x b)(a y b)(a y b)(a x b)(a y b)(a x b)=$
has decidable prefix membership problem $\Longrightarrow$ the inverse monoid

$$
M=\operatorname{lnv}\langle a, b, x, y| \text { axbaybaybaxbaybaxb }=1\rangle
$$

has decidable WP.

## Chicago O'Hare International Airport (IATA code: ORD)



While waiting for a connecting flight at ORD sometime in the 1980s, Stuart Margolis and John Meakin came up with the following example, the (in)famous O'Hare (inverse) monoid:

$$
\operatorname{Inv}\langle a, b, c, d \mid(a b c d)(a c d)(a d)(a b b c d)(a c d)=1\rangle
$$

## Application \#2: O'Hare-type examples

## Proposition

Let $M=\operatorname{lnv}\left\langle Y, a, d \mid\left(a u_{i_{1}} d\right) \ldots\left(a u_{i_{m}} d\right)=1\right\rangle$, where $a, d$ do not appear in $u_{i j}$ 's. Assume further that:

- some of the $u_{i_{j}}$ 's is the empty word;
- for each $x \in Y$ we have $x \equiv \operatorname{red}\left(u_{i_{r}} u_{i_{s}}^{-1}\right)$ for some $r, s$;
- each $a u_{i_{j}} d$ represents a unit of $M$.

Then $G=G p\left\langle Y, a, d \mid\left(a u_{i_{1}} d\right) \ldots\left(a u_{i_{m}} d\right)=1\right\rangle$ has decidable prefix membership problem, and so $M$ as decidable WP.

Consequently, the WP for the O'Hare monoid is decidable - just as announced at the WOW workshop in January 2018 by this fine gentleman:


## Application \#3: Disjoint alphabets

## Theorem

- $G=\operatorname{Gp}\langle X \mid w=1\rangle, w$ is cyclically reduced
- $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ - a conservative factorisation of $w$
- $i \neq j \Rightarrow w_{i}$ and $w_{j}$ have no letters in common
$\Longrightarrow G$ has decidable prefix membership problem, and thus $M=\operatorname{lnv}\langle X \mid w=1\rangle$ has decidable WP.


## Example

The group

$$
G=G p\langle a, b, c, d \mid(a b a b)(c d c d)(a b a b)(c d c d)(c d c d)(a b a b)=1\rangle
$$

has decidable prefix membership problem $\Longrightarrow$ the inverse monoid

$$
M=\operatorname{Inv}\langle a, b, x, y \mid a b a b c d c d a b a b c d c d c d c d a b a b=1\rangle
$$

has decidable WP.

## Application \#4: Cyclically pinched presentations

Theorem
The prefix membership problem is decidable for one-relator groups defined by cyclically pinched presentations:

$$
G=\mathrm{Gp}\left\langle X \cup Y \mid u v^{-1}=1\right\rangle
$$

where $u, v$ are reduced words over disjoint $X, Y$, respectively.

## Example

This implies decidability of the prefix membership problem for surface groups:

- orientable (known)

$$
\operatorname{Gp}\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \mid\left[a_{1}, b_{1}\right] \ldots\left[a_{n}, b_{n}\right]=1\right\rangle,
$$

- non-orientable (new)

$$
\operatorname{Gp}\left\langle a_{1}, \ldots, a_{n} \mid a_{1}^{2} \ldots a_{n}^{2}=1\right\rangle .
$$

## Theorem C

$G^{*}=G *_{t, \phi: A \rightarrow B}(G, A, B$ finitely generated $):$

- $G$ has decidable word problem;
- the membership problems for $A$ and $B$ are decidable in $G$.

Let $M$ be a submonoid of $G^{*}$ with the following properties:
(i) $A \cup B \subseteq M$;
(ii) $M \cap G$ is f.g. and

$$
M=\operatorname{Mon}\left\langle(M \cap G) \cup\left\{t, t^{-1}\right\}\right\rangle ;
$$

(iii) the membership problem for $M \cap G$ in $G$ is decidable.


Then the membership problem for $M$ in $G^{*}$ is decidable.

## Theorem D

$G^{*}=G *_{t, \phi: A \rightarrow B}(G, A, B$ finitely generated):

- $G$ has decidable rational subset membership problem;
- $A \leq G$ is effectively closed for rational intersections.

For some finite $W_{0}, W_{1}, \ldots, W_{d}, W_{1}^{\prime}, \ldots, W_{d}^{\prime} \subseteq G$ let

$$
M=\operatorname{Mon}\left\langle W_{0} \cup W_{1} t \cup W_{2} t^{2} \cup \cdots \cup W_{d} t^{d} \cup t W_{1}^{\prime} \cup \cdots \cup t^{d} W_{d}^{\prime}\right\rangle
$$

Then the membership problem for $M$ in $G^{*}$ is decidable.


## Application \#5: Exponent sum zero result

$G=\mathrm{Gp}\langle X \mid w=1\rangle$ : some $t \in X$ has exponent sum zero in $w$.
By general theory ("Magnus' method", also Lyndon \& McCool), $G$ is $\cong$ an HNN extension of

$$
H=\operatorname{Gp}\left\langle X^{\prime} \mid \rho_{t}(w)=1\right\rangle
$$

where $\left|\rho_{t}(w)\right|<|w|$, w.r.t. to free associated subgroups $A, B$ (will show this in a minute on a concrete example).
Theorem
Suppose that:

- $\rho_{t}(w)$ is cyclically reduced;
- H has decidable rational subset membership problem;
- $A \leq H$ is effectively closed for rational intersections;
- $w$ is either prefix $t$-positive or prefix $t$-negative.
$\Longrightarrow G$ has decidable prefix membership problem.


## Application \#5: Exponent sum zero result (example)

$$
\begin{gathered}
w \equiv t^{-1} b c b t^{-8} b b c t^{6} c t^{3} a t^{-3} b t^{3} a t^{-3} c t^{2} c t a \\
\downarrow \\
\rho_{t}(w) \equiv b_{1} c_{1} b_{1} b_{9} b_{9} c_{9} c_{3} a_{0} b_{3} a_{0} c_{3} c_{1} a_{0}
\end{gathered}
$$

$G=\operatorname{Gp}\langle X \mid w=1\rangle$ is $\cong$ an HNN extension of

$$
H=\operatorname{Gp}\left\langle a_{0}, b_{1}, \ldots, b_{9}, c_{1}, \ldots, c_{9} \mid \rho_{t}(w)=1\right\rangle \quad(\text { free of rank } 18)
$$

w.r.t. $A=\operatorname{Gp}\left\langle b_{1}, \ldots, b_{8}, c_{1}, \ldots, c_{8}\right\rangle$ and $B=\operatorname{Gp}\left\langle b_{2}, \ldots, b_{9}, c_{2}, \ldots, c_{9}\right\rangle$ (which are free by Freiheitssatz);
$\Longrightarrow G$ has decidable prefix membership problem.
$+w$ is cyclically reduced $\Longrightarrow M=\operatorname{lnv}\langle X \mid w=1\rangle$ has decidable WP.
Further examples:

- large classes of Adyan-type presentations;
- conjugacy pinched presentations $\operatorname{Gp}\left\langle X, t \mid t^{-1} u t v^{-1}=1\right\rangle$ ( $u, v \in \bar{X}^{*}$ reduced), including Baumslag-Solitar groups:

$$
B(m, n)=\mathrm{Gp}\left\langle a, b \mid b^{-1} a^{m} b a^{-n}=1\right\rangle
$$

## The grand finale \& an open problem

By modifying slightly the ideas from Bob's Inventiones paper, we obtain

Theorem
There exists a reduced word w over a 3-letter alphabet $X$ such that $G=\mathrm{Gp}\langle X \mid w=1\rangle$ has undecidable prefix membership problem.

## Open Problem

Characterise the words $w \in \bar{X}^{*}$ such that the prefix membership problem for $\operatorname{Gp}\langle X \mid w=1\rangle$ is decidable.
In particular, what about cyclically reduced words?

## Thank you!



Questions and comments to: dockie@dmi.uns.ac.rs

Further information may be found at:
http://people.dmi.uns.ac.rs/~dockie

