3.2 Simple Functions

Definition A function $f : X \to \mathbb{R}$ is *simple* if it takes only a finite number of different values.

Note these values must be finite. Writing them as $a_i, 1 \leq i \leq N$, and letting $A_i = \{x \in X : f(x) = a_i\}$, we can write

$$f = \sum_{i=1}^{N} a_i \chi_{A_i}$$

where χ_A is the characteristic function of A, that is, $\chi_A(x) = 1$ if $x \in A$, and 0 otherwise.

Lemma 3.7

The simple functions are closed under addition and multiplication.

Proof

Let $s = \sum_{i=1}^{M} a_i \chi_{A_i}$ and $t = \sum_{j=1}^{N} b_j \chi_{B_j}$ where $\bigcup_{i=1}^{M} A_i = \bigcup_{j=1}^{N} B_j = X$.

Define $C_{ij} = A_i \cap B_j$. Then $A_i \subseteq X = \bigcup_{j=1}^{N} B_j$ and so $A_i = A_i \cap \bigcup_{j=1}^{N} B_j = \bigcup_{j=1}^{N} C_{ij}$. Similarly $B_j = \bigcup_{i=1}^{M} C_{ij}$. Since the C_{ij} are disjoint this means that

$$\chi_{A_i} = \sum_{j=1}^{N} \chi_{C_{ij}} \quad \text{and} \quad \chi_{B_j} = \sum_{i=1}^{M} \chi_{C_{ij}}.$$

Thus

$$s = \sum_{i=1}^{M} \sum_{j=1}^{N} a_i \chi_{C_{ij}} \quad \text{and} \quad t = \sum_{i=1}^{M} \sum_{j=1}^{N} b_j \chi_{C_{ij}}.$$

Hence

$$s + t = \sum_{i=1}^{M} \sum_{j=1}^{N} (a_i + b_j) \chi_{C_{ij}} \quad \text{and} \quad st = \sum_{i=1}^{M} \sum_{j=1}^{N} a_i b_j \chi_{C_{ij}}$$

are simple functions. ■

Let \mathcal{F} be a σ-field on X. Assume that for a simple function f we have $A_i \in \mathcal{F}$ for all i. Then

$$\{x : f(x) > c\} = \bigcup_{a_i > c} A_i \in \mathcal{F}$$

for all $c \in \mathbb{R}$. Hence f is \mathcal{F}-measurable. Conversely assume that f is \mathcal{F}-measurable. Order the values attained by f as $a_1 < a_2 < ... < a_N$. Given
1 \leq j \leq N \text{ choose } a_{j-1} < c_1 < a_j < c_2 < a_{j+1}. \text{ (If } j = 1 \text{ or } N \text{ part of this requirement is empty.) Then}

\[
A_j = \left(\bigcup_{a_i > c_1} A_i \right) \setminus \left(\bigcup_{a_i > c_2} A_i \right) = \{ x : f(x) > c_1 \} \setminus \{ x : f(x) > c_2 \} \in \mathcal{F}.
\]

Hence

Lemma 3.8

If \(f : (X, \mathcal{F}) \to \mathbb{R} \) is a simple function then \(f \) is \(\mathcal{F} \)-measurable if, and only if, \(A_i \in \mathcal{F} \) for all \(1 \leq i \leq N \).

Corollary 3.9

The simple \(\mathcal{F} \)-measurable functions are closed under addition and multiplication.

Proof

Simply note in the proof of Lemma 3.7 that since \(A_i \) and \(B_j \) are in \(\mathcal{F} \) then \(C_{ij} \in \mathcal{F} \).

Note If \(s \) is a simple function and \(g : \mathbb{R} \to \mathbb{R} \) is any function whose domain contains the values of \(s \) then \(g \circ s \) (defined by \((g \circ s)(x) = g(s(x)) \)) is simple. In fact

\[
g \circ s = \sum_{i=1}^{N} g(a_i) \chi_{A_i} = \sum_{j=1}^{M} b_j \chi_{B_i}
\]

for some \(M \leq N \) and where \(B_j = \bigcup_{g(a_i) = b_j} A_i \). Also if \(s \) is \(\mathcal{F} \)-measurable then \(g \circ s \) is too.

The next result is very important.

Theorem 3.10

Let \(f \) be a non-negative \(\mathcal{F} \)-measurable function. Then there exist a sequence of simple \(\mathcal{F} \)-measurable functions \(s_n \) such that \(0 \leq s_1 \leq ... \leq s_n \leq s_{n+1} \leq ... \) and \(\lim_{n \to \infty} s_n = f \).

Proof

We partition the range of \(f \) using the points in \(D_n = \{ \frac{\nu}{2^n} : 0 \leq \nu \leq n2^n \} \).

Importantly, though trivial, we have \(D_n \subseteq D_{n+1} \).

Define \(s_n(x) = \max\{ \gamma \in D_n, \gamma \leq f(x) \} \).

Then \(D_n \subseteq D_{n+1} \) means that for any given \(x \),
Amadeus was a letter from the sky. He was a shepherd. He was a wizard. He was a king.
Combining Theorems 3.10 and 3.6 we see that a function \(f : (X, \mathcal{F}) \to \mathbb{R}^+ \) is \(\mathcal{F} \)-measurable if, and only if, there exists an increasing sequence of simple, \(\mathcal{F} \)-measurable functions converging to \(f \).

Corollary 3.11

If \(f : (X, \mathcal{F}) \to \mathbb{R}^+ \) is \(\mathcal{F} \)-measurable then it is the limit of a sequence of simple \(\mathcal{F} \)-measurable functions.

Proof

As in the proof of Theorem 3.4(viii) we can write \(f = f^+ - f^- \) where \(f^+ \) and \(f^- \) are non-negative \(\mathcal{F} \)-measurable functions. So by Theorem 3.10 we can find sequences of simple, \(\mathcal{F} \)-measurable functions \(s_n \to f^+ \) and \(t_n \to f^- \) in which case \(\{s_n - t_n\}_{n \geq 1} \) is the required sequence of simple functions (using Lemma 3.7) converging to \(f \). \[\blacksquare \]

Corollary 3.12

If \(f : (X, \mathcal{F}) \to \mathbb{R}^* \) is \(\mathcal{F} \)-measurable and \(g : \mathbb{R} \to \mathbb{R} \) a continuous function whose domain contains the values of \(f \) then the composition function \(g \circ f \) is \(\mathcal{F} \)-measurable.

Proof

By Corollary 3.11 we can find a sequence of simple, \(\mathcal{F} \)-measurable functions \(s_n \to f \). By an earlier note the functions \(g \circ s_n \) are simple and still \(\mathcal{F} \)-measurable for all \(n \). Then

\[
\lim_{n \to \infty} g(s_n(x)) = g(\lim_{n \to \infty} s_n(x)) \quad \text{since } g \text{ is continuous,}
\]

\[
= g(f(x))
\]

\[
= (g \circ f)(x)
\]

for all \(x \in X \), i.e. \(g \circ f = \lim_{n \to \infty} g \circ s_n \). Hence, by Theorem 3.6, \(g \circ f \) is \(\mathcal{F} \)-measurable. \[\blacksquare \]

Example 12 If \(f : (X, \mathcal{F}) \to \mathbb{R}^+ \) is \(\mathcal{F} \)-measurable then \(\sin f \), \(\exp(f) \) and \(\log f \) are also \(\mathcal{F} \)-measurable on the set of \(x \) on which they are defined.