Section 5 Series with non-negative terms

Theorem 5.1 Let \(\sum_{r=1}^{\infty} a_r \) be a series with non-negative terms and let \(s_n \) be the \(n \)-th partial sum for each \(n \in \mathbb{N} \). Then \(\sum_{r=1}^{\infty} a_r \) is convergent if, and only if, \(\{s_n\}_{n \in \mathbb{N}} \) is bounded.

Proof Since \(a_r \geq 0 \) for all \(r \in \mathbb{N} \), then \(s_{n+1} - s_n = a_{n+1} \geq 0 \), i.e. \(s_{n+1} \geq s_n \) for all \(n \geq 1 \) and so the sequence \(\{s_n\}_{n \in \mathbb{N}} \) of partial sums is increasing.

\((\Rightarrow)\) If \(\sum_{r=1}^{\infty} a_r \) converges then \(\{s_n\}_{n \in \mathbb{N}} \) converges by definition. Hence, by Theorem 3.2, \(\{s_n\}_{n \in \mathbb{N}} \) is bounded.

\((\Leftarrow)\) Conversely, if \(\{s_n\}_{n \in \mathbb{N}} \) is bounded then, in particular, it is bounded above. Since \(\{s_n\}_{n \in \mathbb{N}} \) is also increasing, then \(\{s_n\}_{n \in \mathbb{N}} \) is convergent by Theorem 3.4. Thus we have verified the definition that \(\sum_{r=1}^{\infty} a_r \) is convergent. \(\blacksquare \)

Remark If the series of non-negative terms \(\sum_{r=1}^{\infty} a_r \) is convergent, the sequence \(\{s_n\}_{n \in \mathbb{N}} \) is convergent and its limit, which is the sum of the series, is the lub \(\{s_n : n \in \mathbb{N}\} \). (See Theorem 3.4.)

The next result is a way of testing convergence or divergence by comparison with a known series.

Theorem 5.2 (First Comparison Test)

Let \(\sum_{r=1}^{\infty} a_r \) and \(\sum_{r=1}^{\infty} b_r \) be series with \(0 \leq a_r \leq b_r \) for all \(r \in \mathbb{N} \).

(i) If \(\sum_{r=1}^{\infty} b_r \) is convergent then \(\sum_{r=1}^{\infty} a_r \) is convergent. If \(\sum_{r=1}^{\infty} b_r \) has sum \(\tau \) and \(\sum_{r=1}^{\infty} a_r \) has a sum \(\sigma \), then \(\sigma \leq \tau \).

(ii) If \(\sum_{r=1}^{\infty} a_r \) is divergent, then \(\sum_{r=1}^{\infty} b_r \) is divergent.

Proof

(i) Let \(s_n \) and \(t_n \) be the \(n \)-th partial sums of \(\sum_{r=1}^{\infty} a_r \) and \(\sum_{r=1}^{\infty} b_r \), respectively. As in the proof of Theorem 5.1 both \(\{s_n\}_{n \in \mathbb{N}} \) and \(\{t_n\}_{n \in \mathbb{N}} \) are increasing sequences.

By hypothesis, \(\{t_n\}_{n \in \mathbb{N}} \) is convergent with limit \(\tau \). But \(\{t_n\}_{n \in \mathbb{N}} \) is increasing, so by Theorem 3.4, \(\tau \) is the least upper bound of \(\{t_n : n \in \mathbb{N}\} \).

Since \(0 \leq a_r \leq b_r \) for all \(r \in \mathbb{N} \), we have that

\[0 \leq \sum_{r=1}^{n} a_r \leq \sum_{r=1}^{n} b_r, \]

i.e. \(0 \leq s_n \leq t_n \) for all \(n \in \mathbb{N} \). Thus all the \(s_n \) are no greater than any upper bound of \(\{t_n : n \in \mathbb{N}\} \), that is, \(s_n \leq \tau \) for all \(n \in \mathbb{N} \). So \(\tau \) is an upper bound
for \(\{s_n : n \in \mathbb{N}\} \).

Then, since \(\{s_n\}_{n \in \mathbb{N}} \) is also increasing, we have again by Theorem 3.4 that
\(\{s_n\}_{n \in \mathbb{N}} \) is convergent with limit \(\sigma = \text{lub}\{s_n : n \in \mathbb{N}\} \). Being the least of all upper bounds \(\sigma \) is less than or equal to any upper bound of the \(\{s_n : n \in \mathbb{N}\} \). In particular, \(\sigma \leq \tau \).

(ii) Again, this is simply the contrapositive of part (i) (See the appendix within section 3 of these notes.) \(\blacksquare\)

Example Show that \(\sum_{r=0}^{\infty} \frac{1}{3^r+1} \) is convergent and \(\sum_{r=1}^{\infty} \frac{1}{r^{2/3}} \) is divergent.

Solution Firstly,

\[
0 \leq \frac{1}{3^r+1} \leq \frac{1}{3^r}
\]

and \(\sum_{r=0}^{\infty} \frac{1}{3^r} \) converges since it is a Geometric Series with ratio \(\frac{1}{3} \) (See Theorem 4.1). Hence our series converges.

Secondly,

\[
0 \leq \frac{1}{r} \leq \frac{1}{r^{2/3}}
\]

and the fact that \(\sum_{r=1}^{\infty} \frac{1}{r} \) diverges is an earlier example. Hence our series diverges. \(\blacksquare\)

See also Question 6 Sheet 5

Theorem 5.3 (Second Comparison Test)

Let \(\sum_{r=1}^{\infty} a_r \) and \(\sum_{r=1}^{\infty} b_r \) be series such that \(a_r \geq 0 \) and \(b_r > 0 \) for all \(r \in \mathbb{N} \). Suppose that the sequence \(\{a_n / b_n\}_{n \in \mathbb{N}} \) is convergent with limit \(\ell \neq 0 \).

Then \(\sum_{r=1}^{\infty} a_r \) is convergent if and only if \(\sum_{r=1}^{\infty} b_r \) is convergent.

Proof

Suppose that \(\lim_{n \to \infty} a_n / b_n = \ell \). Since \(a_n \geq 0 \) and \(b_n > 0 \) we have \(a_n / b_n \geq 0 \) and thus \(\ell \geq 0 \). But, by assumption, \(\ell \neq 0 \), hence \(\ell > 0 \).

We now apply Lemma 3.6, concluding that there exists \(N_0 \in \mathbb{N} \) such that

\[
\frac{\ell}{2} < \frac{a_n}{b_n} < \frac{3\ell}{2}
\] \hfill (11)

for all \(n \geq N_0 \).

(\(\Rightarrow\)) First suppose that \(\sum_{r=1}^{\infty} a_r \) is convergent.
By Theorem 4.2 $\sum_{r=N_0}^{\infty} a_r$ is convergent.

By Theorem 4.4 $\sum_{r=N_0}^{\infty} \frac{2}{r} a_r$ is convergent.

From (11) we have

$$0 < b_n < \frac{2}{\ell} a_n$$

for all $n \geq N_0$. So, by the First Comparison Test, $\sum_{r=N_0}^{\infty} b_r$ is convergent.

Finally, by Theorem 4.2 again, $\sum_{r=1}^{\infty} b_r$ is convergent.

(\Leftarrow) Conversely, suppose that $\sum_{r=1}^{\infty} b_r$ is convergent.

By Theorem 4.2 $\sum_{r=N_0}^{\infty} b_r$ is convergent.

By Theorem 4.4 $\sum_{r=N_0}^{\infty} \frac{3\ell}{2} a_r$ is convergent.

This time we use (11) in the form

$$0 \leq a_n < \frac{3\ell}{2} b_n$$

for all $n \geq N_0$. So, by the First Comparison Test, $\sum_{r=N_0}^{\infty} \frac{3\ell}{2} a_r$ is convergent.

Again $\sum_{r=1}^{\infty} a_r$ is convergent, justified by Theorems 4.2.

\[\Box\]

Note If the sequence $\{a_n/b_n\}_{n \in \mathbb{N}}$ is either divergent or has a zero limit then Theorem 5.3 tells us nothing. We have to either choose a different series $\sum b_r$ for comparison or use a different test on our given series $\sum a_r$.

We can use the Comparison tests to prove the following.

Theorem 5.4

$$\sum_{r=1}^{\infty} \frac{1}{r^2}$$

is convergent.

Solution. As before, the idea is to compare this series with

$$\sum_{r=1}^{\infty} \frac{1}{r(r+1)}.$$

This may not look a “simpler” series but we saw in Theorem 4.8 that it is easy to sum.

Let $a_n = \frac{1}{n^2}$ and $b_n = \frac{1}{n(n+1)}$. Then $\frac{a_n}{b_n} = 1 + \frac{1}{n}$ and so $\lim_{n \to \infty} \frac{a_n}{b_n} = 1 \neq 0$.

Hence by the Second Comparison test, Theorem 5.3, $\sum_{r=1}^{\infty} \frac{1}{r^2}$ is convergent.
Excercise for students; try to show that $\sum_{r=1}^{\infty} \frac{1}{r^2}$ converges, with sum less than 2, using the First Comparison Test.

Note In later courses it will be shown that $\sum_{r=1}^{\infty} \frac{1}{r^2}$ has sum $\pi^2/6$.

Theorem 5.4 For $k \in \mathbb{Z}$ we have that

$$\sum_{r=1}^{\infty} \frac{1}{r^k} \quad \text{is} \quad \begin{cases} \text{convergent if } k \geq 2 \\ \text{divergent if } k \leq 1. \end{cases}$$

Proof (Left to student)

Example Test the series $\sum_{r=1}^{\infty} \frac{2r^2 + 2r + 1}{r^5 + 2}$ for convergence.

Solution

Rough work

For large r, $2r^2 + 2r + 1$ is dominated by $2r^2$ (i.e. if $r = 1,000$ then $2r^2$ differs from $2r^2 + 2r + 1$ by less than 0.1%). Similarly $r^5 + 2$ is dominated by r^5, so for large r the sum will “look like” $\sum_{r} \frac{2}{r}$ which we know, by Theorem 5.4, converges.

End of rough work

Let

$$a_n = \frac{2n^2 + 2n + 1}{n^5 + 2}, \quad \text{and} \quad b_n = \frac{1}{n^5}.$$

Then

$$\frac{a_n}{b_n} = \frac{n^3(2n^2 + 2n + 1)}{n^5 + 2} = \frac{2 + \frac{2}{n} + \frac{2}{n^2}}{1 + \frac{2}{n}} \quad \text{so} \quad \lim_{n \to \infty} \frac{a_n}{b_n} = 2 \neq 0.$$

Since, by Theorem 5.4, $\sum_{r=1}^{\infty} \frac{1}{r^2}$ is convergent, we can use the Second Comparison Test to deduce that $\sum_{r=1}^{\infty} \frac{2r^2 + 2r + 1}{r^5 + 2}$ converges.

Example Test the series $\sum_{r=1}^{\infty} \frac{r^2 - 2r - 3}{r^3 - 2}$ for convergence.
Proof

Rough work
For large r the general term of this series will “look like” $\frac{r^2}{r^3} = \frac{1}{r}$, the sum of which we know diverges.
End of rough work

Let

$$a_n = \frac{n^2 - 2n - 3}{n^3 - 2}, \quad \text{and} \quad b_n = \frac{1}{n}. $$

Then

$$\frac{a_n}{b_n} = \frac{n(n^2 - 2n - 3)}{n^3 - 2} = \frac{1 - \frac{2}{n} - \frac{3}{n^2}}{1 - \frac{2}{n^3}},$$

so \(\lim_{n \to \infty} \frac{a_n}{b_n} = 1 \neq 0 \).

Since by an example above, the Harmonic series \(\sum_{r=1}^{\infty} \frac{1}{r} \) is divergent, we can use the Second Comparison Test to deduce that \(\sum_{r=1}^{\infty} \frac{r^2 - 2r - 3}{r^3 - 2} \) diverges. \(\blacksquare \)

Exercise for student: try to prove the last result using the First Comparison Test.

Remark In the last example we have cheated slightly as \(a_r < 0 \) when \(r = 2 \). The Comparison Test requires \(a_r \geq 0 \) for all \(r \). However, this does not matter because we can apply the test to \(\sum_{r=3}^{\infty} a_r \) and deduce that this is divergent. Then \(\sum_{r=1}^{\infty} a_r \) must also be divergent. Thus the Comparison Tests can be applied to series \(\sum_{r=1}^{\infty} a_r \) which have at most a finite number of negative terms.

Appendix

Theorem 5.5 For \(k \in \mathbb{Z} \) we have that

$$\sum_{r=1}^{\infty} \frac{1}{r^k} \quad \text{is} \quad \begin{cases} \text{convergent if } k \geq 2 \\ \text{divergent if } k \leq 1. \end{cases}$$

Proof If \(k \geq 2 \) then

$$0 < \frac{1}{r^k} \leq \frac{1}{r^2}.$$

for all \(r \in \mathbb{N} \). By Theorem 5.4, \(\sum_{r=1}^{\infty} \frac{1}{r^2} \) is convergent. So by the First Comparison Test, Theorem 5.2, we deduce that \(\sum_{r=1}^{\infty} \frac{1}{r^k} \) is convergent.

If \(k \leq 1 \) then
\[\frac{1}{r} \leq \frac{1}{r^k} \]

for all \(r \in \mathbb{N} \). We have seen earlier that the Harmonic series, \(\sum_{r=1}^{\infty} \frac{1}{r} \), is divergent. So by the First Comparison Test, Theorem 5.2, we deduce that \(\sum_{r=1}^{\infty} \frac{1}{r^k} \) is divergent. ■

Note I have restricted to \(k \in \mathbb{Z} \) in Theorem 5.5 since I have not defined \(r^k \) when \(r \in \mathbb{N} \), for a general \(k \in \mathbb{R} \). For example, how would we define \(2^{\sqrt{2}} \) or \(3^{\pi} \)?

But we can define \(r^k \) when \(k \in \mathbb{Q} \). For when \(k \in \mathbb{Q} \) we can write \(k = p/q \) where \(p \in \mathbb{Z} \) and \(q \in \mathbb{N} \). Then we can define \(r^k = (r^{1/q})^p \) where \(r^{1/q} \) is the positive real root of \(x^q - r = 0 \).

With this definition we can extend Theorem 5.5: Let \(k \in \mathbb{Q} \). Then

\[
\sum_{r=1}^{\infty} \frac{1}{r^k}
\]

is \(\begin{cases}
\text{convergent if } k > 1 \\
\text{divergent if } k \leq 1.
\end{cases} \)

This shows that the case \(k = 1 \), the Harmonic series, is on the boundary between convergence and divergence. In particular, it diverges but it does so slowly.