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The sole purpose of this short note is to make readily accessible a represen-
tation result from Unary Predicate Logic which find frequent use in Pure
Inductive Logic.

Let L be a language for first order logic with (just) the unary relation sym-
bols Ry, Rs, ..., R, and no constants, function symbols or equality. Let F'L
denote the set of formulae of L. For ¢ € FL write ¢ for ¢ and ¢° for —¢.
We call a formula of L an atom (for Ry, Ry, ..., R,,) if it has the form

Ril ([L’l) VAN R§2(I‘1) VANPIRIAN R;;Ln(l‘l)

for some €y, ¢€s,..., 6, € {0,1}. Since there are 2™ choices for the finite se-
quence €y, €, ..., €, € {0, 1} there are 2™ such atoms, which we shall denote
by al(:vl), ag(l‘l), Ce ,Ozgm(l’l).

Now suppose that we are given an interpretation for L, that is a structure for
L together with an assignment of elements of the universe of the structure
to the free variables xy, 1o, 23,....0 Let 0(zy,...,2,) € FLand 1 < i <
m. Then exactly one of Ry(z;), ~Ri(x;) is true in this interpretation. In
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other words there is a unique €; € {0,1} such that R{'(z;) is true in this
interpretation. Similarly there is a unique e; € {0,1} such that R$(z;) is
true in this interpretation. Continuing in this way we see that there is a
unique atom «y, such that ay, (x;) is true in this interpretation.

Similarly for each 1 < k < 2™ exactly one of Jw; ay(wy) and =Jw; ag(w,) is
true in this interpretation. In other words there is a unique 5 € {0,1} such
that (Jw; ax(w;))% is true in this interpretation. Putting these observations

together then there are unique finite sequences ji, j2, ..., j, € {1,2,...,2™}
and 01, 0a, ..., d9m € {0, 1} such that the formula

A (@) 1 A\ G ag(wn))’ (1)

is true in this interpretation. Call a formula of this form for some 71, jo, ..., Jn €
{1,2,...,2™} and 61,09, ..., 09m € {0,1} a diagram for xq, ..., x,.

Lemma 1.* Let 0(xq,...,x,) € FL and suppose that the relation symbols
occurring in 0 are Ry, Ra, ..., R,, and these are all unary. Then 0(xy, ..., x,)
18 logically equivalent to a disjunction of diagrams for x1,...,T,.

Before we give the proof it is worth noticing that not all diagrams are
satisfiable since a diagram might for example have conjuncts «a;(z;) and
—Jw; ay(wq). Clearly we could, without loss, drop these unsatisfiable dia-
grams from the representation given in this theorem.

Proof. The proof is by induction on the length, |0(x1, ..., z,)|, of 0(z1, ..., x,) €
FL (where each z;,w;, R; has length 1 etc.).

In the case that 0 = R,.(z;), with, say, 1 < i < n, we have from the above
discussion that in any interpretation

g is true <= R,.(x;) is true
<= some atom A,_, R;*(z;) with ¢, =1 is true
<= some diagram (1) where oy, = A\j-; B*(x;)
with ¢, = 1 is true .

In other words R,(x;) is logically equivalent to the disjunction of all such
diagrams.



Now suppose that 0(xy,...,2,) = (¢(x1,...,25) A Y(21,...,2,)). By in-
ductive hypothesis ¢ is logically equivalent to a disjunction of diagrams for
X = x1,%9,...,T, SO given an interpretation ¢ is true in that interpretation
just if the unique diagram which is true in that interpretation is one of these
disjuncts. Similarly for .

Hence 6 is true in an interpretation just if the diagram true in that interpre-
tation is a disjunct for both ¢ and . Or to put it another way 6 is logically
equivalent to the disjunction of diagrams which appear in the corresponding
forms for both ¢ and 1. The cases for the other connectives are exactly
analogous.

The tricky cases concern the quantifiers. So now suppose that 0(xy, ..., z,) =
Jw; ¢(z1, ..., %n, w;). By inductive hypothesis then there are diagrams for
Ty Ty Ty, 88Y (21, ..o, Tp, Tpyp) for g =1,..., u, such that

u
O(T1,. o Tpgr) = \/ Eg(X1, .o Ty Tt
g=1

Then using well known logical equivalents

Jw; ¢(z1,. .., T, w;) = FJwsy (\/fg(xl,...,xn,wg)>
g=1

(\/ ElUJgé-g(Il,...,I'n,wg)>. (2)

Since each &, (21, ..., T,, wy) is a conjunction of expressions only one of which
actually mentions wy, and that one has the form v, (wy) for some atom «, (),
standard logical equivalents give that this Jw, & (1, . .., z,, w2) is logically
equivalent to a formula of the form

Jws ay(we) A (1, ..., xy) (3)

where ( is a diagram for zy,...,2,. If (Jw; a,(w,))* already appears in
then (3) is logically equivalent to ¢. On the other hand if (Jw; a,(w;))* does
not already appear in ¢ then (Jw; o, (wy))?, i.e. =Jw; a,(wy), must appear
in ¢ and in that case (3) is not satisfiable.

Using standard logical equivalents it now follows that Jw; ¢(x1,. .., z,, w;)
is logically equivalent to the disjunction of the (distinct) diagrams for which
the (3) yielded a satisfiable (, giving the required result.
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Finally in the case §(z1, ..., x,) = Yw; ¢(z1, . .., z,, w;) we have that 0(z4, ..., z,) =
—Jw; =p(x1, ..., 2, w;). To treat this formula it is simplest to use three of

the cases already covered, namely going from ¢(x1, ..., Ty, Tpy1) (where we

can use the Inductive Hypothesis) to

—d(21, ..., Tp, Typ1) (for which we then have the Inductive Hypothesis),
thence to Jw; ~¢(x1, ..., 2y, w;), and finally to -Jw; ~¢(x1, ..., 2s, w;).
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