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The sole purpose of this short note is to make readily accessible a represen-
tation result from Unary Predicate Logic which find frequent use in Pure
Inductive Logic.

Let L be a language for first order logic with (just) the unary relation sym-
bols R1, R2, . . . , Rm and no constants, function symbols or equality. Let FL
denote the set of formulae of L. For φ ∈ FL write φ1 for φ and φ0 for ¬φ.
We call a formula of L an atom (for R1, R2, . . . , Rm) if it has the form

Rε1
1 (x1) ∧Rε2

2 (x1) ∧ . . . ∧Rεm
m (x1)

for some ε1, ε2, . . . , εm ∈ {0, 1}. Since there are 2m choices for the finite se-
quence ε1, ε2, . . . , εm ∈ {0, 1} there are 2m such atoms, which we shall denote
by α1(x1), α2(x1), . . . , α2m(x1).

Now suppose that we are given an interpretation for L, that is a structure for
L together with an assignment of elements of the universe of the structure
to the free variables x1, x2, x3, . . ..

1 Let θ(x1, . . . , xn) ∈ FL and 1 ≤ i ≤
m. Then exactly one of R1(xi),¬R1(xi) is true in this interpretation. In
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1We shall use w1, w2, w3, . . . for bound variables so no confusion can arise.
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other words there is a unique ε1 ∈ {0, 1} such that Rε1
1 (xi) is true in this

interpretation. Similarly there is a unique ε2 ∈ {0, 1} such that Rε2
2 (xi) is

true in this interpretation. Continuing in this way we see that there is a
unique atom αhi such that αhi(xi) is true in this interpretation.

Similarly for each 1 ≤ k ≤ 2m exactly one of ∃w1 αk(w1) and ¬∃w1 αk(w1) is
true in this interpretation. In other words there is a unique δk ∈ {0, 1} such
that (∃w1 αk(w1))

δk is true in this interpretation. Putting these observations
together then there are unique finite sequences j1, j2, . . . , jn ∈ {1, 2, . . . , 2m}
and δ1, δ2, . . . , δ2m ∈ {0, 1} such that the formula

n∧
i=1

αji(xi) ∧
2m∧
j=1

(∃w1 αj(w1))
δj (1)

is true in this interpretation. Call a formula of this form for some j1, j2, . . . , jn ∈
{1, 2, . . . , 2m} and δ1, δ2, . . . , δ2m ∈ {0, 1} a diagram for x1, . . . , xn.

Lemma 1.∗ Let θ(x1, . . . , xn) ∈ FL and suppose that the relation symbols
occurring in θ are R1, R2, . . . , Rm and these are all unary. Then θ(x1, . . . , xn)
is logically equivalent to a disjunction of diagrams for x1, . . . , xn.

Before we give the proof it is worth noticing that not all diagrams are
satisfiable since a diagram might for example have conjuncts α1(x1) and
¬∃w1 α1(w1). Clearly we could, without loss, drop these unsatisfiable dia-
grams from the representation given in this theorem.

Proof. The proof is by induction on the length, |θ(x1, . . . , xn)|, of θ(x1, . . . , xn) ∈
FL (where each xi, wi, Ri has length 1 etc.).

In the case that θ = Rr(xi), with, say, 1 ≤ i ≤ n, we have from the above
discussion that in any interpretation

θ is true ⇐⇒ Rr(xi) is true

⇐⇒ some atom
∧m
k=1R

εk
k (xi) with εr = 1 is true

⇐⇒ some diagram (1) where αji =
∧m
k=1R

εk
k (xj)

with εr = 1 is true .

In other words Rr(xi) is logically equivalent to the disjunction of all such
diagrams.
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Now suppose that θ(x1, . . . , xn) = (φ(x1, . . . , xn) ∧ ψ(x1, . . . , xn)). By in-
ductive hypothesis φ is logically equivalent to a disjunction of diagrams for
~x = x1, x2, . . . , xn so given an interpretation φ is true in that interpretation
just if the unique diagram which is true in that interpretation is one of these
disjuncts. Similarly for ψ.

Hence θ is true in an interpretation just if the diagram true in that interpre-
tation is a disjunct for both φ and ψ. Or to put it another way θ is logically
equivalent to the disjunction of diagrams which appear in the corresponding
forms for both φ and ψ. The cases for the other connectives are exactly
analogous.

The tricky cases concern the quantifiers. So now suppose that θ(x1, . . . , xn) =
∃wj φ(x1, . . . , xn, wj). By inductive hypothesis then there are diagrams for
x1, . . . , xn, xn+1, say ξg(x1, . . . , xn, xn+1) for g = 1, . . . , u, such that

φ(x1, . . . , xn+1) ≡
u∨
g=1

ξg(x1, . . . , xn, xn+1).

Then using well known logical equivalents

∃wj φ(x1, . . . , xn, wj) ≡ ∃w2

(
u∨
g=1

ξg(x1, . . . , xn, w2)

)

≡

(
u∨
g=1

∃w2 ξg(x1, . . . , xn, w2)

)
. (2)

Since each ξg(x1, . . . , xn, w2) is a conjunction of expressions only one of which
actually mentions w2, and that one has the form αv(w2) for some atom αv(x1),
standard logical equivalents give that this ∃w2 ξg(x1, . . . , xn, w2) is logically
equivalent to a formula of the form

∃w2 αv(w2) ∧ ζ(x1, . . . , xn) (3)

where ζ is a diagram for x1, . . . , xn. If (∃w1 αv(w2))
1 already appears in ζ

then (3) is logically equivalent to ζ. On the other hand if (∃w1 αv(w1))
1 does

not already appear in ζ then (∃w1 αv(w1))
0, i.e. ¬∃w1 αv(w1), must appear

in ζ and in that case (3) is not satisfiable.

Using standard logical equivalents it now follows that ∃wj φ(x1, . . . , xn, wj)
is logically equivalent to the disjunction of the (distinct) diagrams for which
the (3) yielded a satisfiable ζ, giving the required result.
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Finally in the case θ(x1, . . . , xn) = ∀wj φ(x1, . . . , xn, wj) we have that θ(x1, . . . , xn) =
¬∃wj ¬φ(x1, . . . , xn, wj). To treat this formula it is simplest to use three of
the cases already covered, namely going from φ(x1, . . . , xn, xn+1) (where we
can use the Inductive Hypothesis) to
¬φ(x1, . . . , xn, xn+1) (for which we then have the Inductive Hypothesis),
thence to ∃wj ¬φ(x1, . . . , xn, wj), and finally to ¬∃wj ¬φ(x1, . . . , xn, wj).
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