A Useful Lemma in Unary Predicate Logic

J.B.Paris*
School of Mathematics
The University of Manchester
Manchester M13 9PL

jeff.paris@manchester.ac.uk

April 8, 2016

The sole purpose of this short note is to make readily accessible a representation result from Unary Predicate Logic which find frequent use in Pure Inductive Logic.

Let L be a language for first order logic with (just) the unary relation symbols R_1, R_2, \ldots, R_m and no constants, function symbols or equality. Let FL denote the set of formulae of L. For $\phi \in FL$ write ϕ^1 for ϕ and ϕ^0 for $\neg \phi$. We call a formula of L an atom (for R_1, R_2, \ldots, R_m) if it has the form

$$R_1^{\epsilon_1}(x_1) \wedge R_2^{\epsilon_2}(x_1) \wedge \ldots \wedge R_m^{\epsilon_m}(x_1)$$

for some $\epsilon_1, \epsilon_2, \ldots, \epsilon_m \in \{0, 1\}$. Since there are 2^m choices for the finite sequence $\epsilon_1, \epsilon_2, \ldots, \epsilon_m \in \{0, 1\}$ there are 2^m such atoms, which we shall denote by $\alpha_1(x_1), \alpha_2(x_1), \ldots, \alpha_{2^m}(x_1)$.

Now suppose that we are given an interpretation for L, that is a structure for L together with an assignment of elements of the universe of the structure to the free variables x_1, x_2, x_3, \ldots^1 Let $\theta(x_1, \ldots, x_n) \in FL$ and $1 \leq i \leq m$. Then exactly one of $R_1(x_i), \neg R_1(x_i)$ is true in this interpretation. In

^{*}Supported by a UK Engineering and Physical Sciences Research Council Research Grant.

¹We shall use w_1, w_2, w_3, \ldots for bound variables so no confusion can arise.

other words there is a unique $\epsilon_1 \in \{0,1\}$ such that $R_1^{\epsilon_1}(x_i)$ is true in this interpretation. Similarly there is a unique $\epsilon_2 \in \{0,1\}$ such that $R_2^{\epsilon_2}(x_i)$ is true in this interpretation. Continuing in this way we see that there is a unique atom α_{h_i} such that $\alpha_{h_i}(x_i)$ is true in this interpretation.

Similarly for each $1 \leq k \leq 2^m$ exactly one of $\exists w_1 \, \alpha_k(w_1)$ and $\neg \exists w_1 \, \alpha_k(w_1)$ is true in this interpretation. In other words there is a unique $\delta_k \in \{0, 1\}$ such that $(\exists w_1 \, \alpha_k(w_1))^{\delta_k}$ is true in this interpretation. Putting these observations together then there are unique finite sequences $j_1, j_2, \ldots, j_n \in \{1, 2, \ldots, 2^m\}$ and $\delta_1, \delta_2, \ldots, \delta_{2^m} \in \{0, 1\}$ such that the formula

$$\bigwedge_{i=1}^{n} \alpha_{j_i}(x_i) \wedge \bigwedge_{j=1}^{2^m} (\exists w_1 \, \alpha_j(w_1))^{\delta_j}$$

$$\tag{1}$$

is true in this interpretation. Call a formula of this form for some $j_1, j_2, \ldots, j_n \in \{1, 2, \ldots, 2^m\}$ and $\delta_1, \delta_2, \ldots, \delta_{2^m} \in \{0, 1\}$ a diagram for x_1, \ldots, x_n .

Lemma 1.* Let $\theta(x_1, \ldots, x_n) \in FL$ and suppose that the relation symbols occurring in θ are R_1, R_2, \ldots, R_m and these are all unary. Then $\theta(x_1, \ldots, x_n)$ is logically equivalent to a disjunction of diagrams for x_1, \ldots, x_n .

Before we give the proof it is worth noticing that not all diagrams are satisfiable since a diagram might for example have conjuncts $\alpha_1(x_1)$ and $\neg \exists w_1 \alpha_1(w_1)$. Clearly we could, without loss, drop these unsatisfiable diagrams from the representation given in this theorem.

Proof. The proof is by induction on the length, $|\theta(x_1, \ldots, x_n)|$, of $\theta(x_1, \ldots, x_n) \in FL$ (where each x_i, w_i, R_i has length 1 etc.).

In the case that $\theta = R_r(x_i)$, with, say, $1 \le i \le n$, we have from the above discussion that in any interpretation

$$\theta$$
 is true \iff $R_r(x_i)$ is true \iff some atom $\bigwedge_{k=1}^m R_k^{\epsilon_k}(x_i)$ with $\epsilon_r = 1$ is true \iff some diagram (1) where $\alpha_{j_i} = \bigwedge_{k=1}^m R_k^{\epsilon_k}(x_j)$ with $\epsilon_r = 1$ is true.

In other words $R_r(x_i)$ is logically equivalent to the disjunction of all such diagrams.

Now suppose that $\theta(x_1, \ldots, x_n) = (\phi(x_1, \ldots, x_n) \land \psi(x_1, \ldots, x_n))$. By inductive hypothesis ϕ is logically equivalent to a disjunction of diagrams for $\vec{x} = x_1, x_2, \ldots, x_n$ so given an interpretation ϕ is true in that interpretation just if the unique diagram which is true in that interpretation is one of these disjuncts. Similarly for ψ .

Hence θ is true in an interpretation just if the diagram true in that interpretation is a disjunct for both ϕ and ψ . Or to put it another way θ is logically equivalent to the disjunction of diagrams which appear in the corresponding forms for both ϕ and ψ . The cases for the other connectives are exactly analogous.

The tricky cases concern the quantifiers. So now suppose that $\theta(x_1, \ldots, x_n) = \exists w_j \, \phi(x_1, \ldots, x_n, w_j)$. By inductive hypothesis then there are diagrams for $x_1, \ldots, x_n, x_{n+1}$, say $\xi_g(x_1, \ldots, x_n, x_{n+1})$ for $g = 1, \ldots, u$, such that

$$\phi(x_1, \dots, x_{n+1}) \equiv \bigvee_{g=1}^{u} \xi_g(x_1, \dots, x_n, x_{n+1}).$$

Then using well known logical equivalents

$$\exists w_j \, \phi(x_1, \dots, x_n, w_j) \equiv \exists w_2 \left(\bigvee_{g=1}^u \xi_g(x_1, \dots, x_n, w_2) \right)$$

$$\equiv \left(\bigvee_{g=1}^u \exists w_2 \, \xi_g(x_1, \dots, x_n, w_2) \right). \tag{2}$$

Since each $\xi_g(x_1, \ldots, x_n, w_2)$ is a conjunction of expressions only one of which actually mentions w_2 , and that one has the form $\alpha_v(w_2)$ for some atom $\alpha_v(x_1)$, standard logical equivalents give that this $\exists w_2 \, \xi_g(x_1, \ldots, x_n, w_2)$ is logically equivalent to a formula of the form

$$\exists w_2 \, \alpha_v(w_2) \land \zeta(x_1, \dots, x_n) \tag{3}$$

where ζ is a diagram for x_1, \ldots, x_n . If $(\exists w_1 \, \alpha_v(w_2))^1$ already appears in ζ then (3) is logically equivalent to ζ . On the other hand if $(\exists w_1 \, \alpha_v(w_1))^1$ does not already appear in ζ then $(\exists w_1 \, \alpha_v(w_1))^0$, i.e. $\neg \exists w_1 \, \alpha_v(w_1)$, must appear in ζ and in that case (3) is not satisfiable.

Using standard logical equivalents it now follows that $\exists w_j \, \phi(x_1, \ldots, x_n, w_j)$ is logically equivalent to the disjunction of the (distinct) diagrams for which the (3) yielded a satisfiable ζ , giving the required result.

```
Finally in the case \theta(x_1,\ldots,x_n) = \forall w_j \, \phi(x_1,\ldots,x_n,w_j) we have that \theta(x_1,\ldots,x_n) = \neg \exists w_j \, \neg \phi(x_1,\ldots,x_n,w_j). To treat this formula it is simplest to use three of the cases already covered, namely going from \phi(x_1,\ldots,x_n,x_{n+1}) (where we can use the Inductive Hypothesis) to \neg \phi(x_1,\ldots,x_n,x_{n+1}) (for which we then have the Inductive Hypothesis), thence to \exists w_j \, \neg \phi(x_1,\ldots,x_n,w_j), and finally to \neg \exists w_j \, \neg \phi(x_1,\ldots,x_n,w_j).
```