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1 Introduction

The present paper stems from a desire to combine ideas arising from two histori-
cally different axiomatic frameworks of probabilistic reasoning, each having its own
traditions, into a single broader axiomatic framework, capable of providing general
new insights into the nature of probabilistic inference in a multiagent context. It is
an extended elaboration and clarification of an approach previously announced in
[38].

In this introduction we describe briefly the background context to the conceptual
framework which we will introduce. In Section 2 we present a set of natural prin-
ciples to be satisfied by any general method of aggregating the partially defined
probabilistic beliefs of several agents into a single probabilistic belief function. We
will call such a general method of aggregation a social inference process. We discuss
in this context what appears to be a novel principle which we call the Collegial Prin-
ciple, which we claim that any social inference process should satisfy. In Section 3
we define a particular social inference process, the Social Entropy Process (abbrevi-
ated to SEP), which satisfies the principles formulated earlier. SEP has a natural
justification in terms of information theory, and is closely related to both the max-
imum entropy inference process and the notion of minimum cross-entropy. Indeed
one of the main the principal aims of the present work is to argue that SEP should
be regarded as the natural extension of the maximum entropy inference process to
the multiagent context. Finally in Section 4 we give an alternative characterisation
of SEP which has a natural heuristic justification.

By way of comparison, for any appropriate set of partial probabilistic beliefs of
an isolated individual the well-known maximum entropy inference process, ME,
chooses a probabilistic belief function consistent with those beliefs. We conjecture
that SEP is the only “natural” social inference process which extends ME to the
multiagent case, always under the assumption that no additional information is
available concerning the expertise or other properties of the individual agents1.

In order to fix notation let S = {α1, α2, . . . αJ } denote some fixed finite set of
mutually exclusive and exhaustive atomic events, or, as we prefer to think of them
in a logical framework, atoms of some finite Boolean algebra of propositions. We
shall refer to S = {α1, α2, . . . αJ } as atoms. A probability function w on S is a
function w : S → [0, 1] such that ΣJ

j=1w(αj) = 1 . Slightly abusing notation we
will identify w with the vector of values < w1 . . . wJ > where wj denotes w(αj)
for j = 1 . . . J . If such a w represents the subjective belief of an individual A in
the outcomes of S we refer to w as A’s belief function. All other more complex
events considered are equivalent to disjunctions of the αj and are represented by
the Greek letters θ, φ, ψ etc. A probability function w is assumed to extend so as
to take values on complex events in the standard way, i.e. for any θ

w(θ) =
∑

αj²θ

w(αj)

where ² denotes the classical notion of logical implication. Conditional probabilities
are defined in the usual manner

w(θ | φ) =
w(θ ∧ φ)

w(φ)

when w(φ) 6= 0 and are left undefined otherwise.

1This condition is sometimes known as the Watts Assumption (see [28]).
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We note that in this paper the use the term “belief function” will always denote a
probability function in the above sense.

The first axiomatic framework referred to above stems from the notion of an infer-
ence process first formulated by Paris and Vencovská some twenty years ago (see
[28], [27],[29], and [30]). The problematic of Paris and Vencovská is that of an
isolated individual A whose belief function is in general not completely specified,
but whose set of beliefs is instead regarded as a set of constraints K on the possible
values which the vector < w1 . . . wJ > may take. The constraint set K therefore
defines a certain region of the Euclidean space RJ , denoted by VK, consisting of
all vectors < w1 . . . wJ > which satisfy the constraints in K together with the con-
ditions that

∑J
j=1 wj = 1 and that wj ≥ 0 for all j. In the special case when K is

the empty set of constraints, we denote the corresponding region VK by DJ .

It is assumed that the constraint sets K which we consider are consistent (i.e. VK

is non-empty), and are such that VK has pleasant geometrical properties. More
precisely, the exact requirement on a set of constraints K is that the set VK forms
a non-empty closed convex region of Euclidean space. Throughout the rest of this
paper all constraint sets to which we refer will be assumed to satisfy this
requirement, and we shall refer to such constraint sets as nice constraint sets2

Paris and Vencovská ask the question: given any such K, by what rational princi-
ples should A choose his probabilistic belief function w consistent with K in the
absence of any other information?

A set of constraints K as above is often called a knowledge base. A rule I which
for every such K chooses such a w ∈ VK is called an inference process. Given K
we denote the belief function w chosen by I by I(K). The question above can then
be reformulated as: what self-evident general principles should an inference process
I satisfy? This question has been intensively studied over the last twenty years
and much is known. In particular in [27] Paris and Vencovská found an elegant set
of principles which uniquely characterise the maximum entropy inference process3,
ME, which is defined as follows: given K as above, ME(K) chooses that unique
belief function w which maximises the Shannon entropy of w, defined as

−
J∑

j=1

wj log wj

subject to the condition that w ∈ VK. Although some of the principles used to
characterise ME may individually be open to philosophical challenge, they are suf-
ficiently convincing overall to give ME the appearance of a gold standard, in the
sense that no other known inference process satisfies an equally convincing set of
principles4. The Paris-Vencovská axiomatic characterisation of ME is particularly
striking because it is quite independent of historically much earlier justifications of

2This formulation ensures that linear constraint conditions such as
w(θ) = a , w(φ | ψ) = b , and w(ψ | θ) ≤ c , where a, b, c ∈ [0, 1] and θ , φ , and ψ are Boolean
combinations of the αj ’s, are all permissible in K provided that the resulting constraint set K
is consistent. Here a conditional constraint such as w(ψ | θ) ≤ c is interpreted as w(ψ ∧ θ) ≤
c w(θ) which is always a well-defined linear constraint, albeit vacuous when w(θ) = 0 .. See e.g.
[28] for further details.

3This characterisation considerably strengthens earlier work of [35].
4Other favored inference processes which satisfy many, but not all, of these principles are the

minimum distance inference process, MD, the limit centre of mass process, CM∞, all Renyi
inference processes, and the remarkable Maximin process of [14]. (See Paris [28] for a general
introduction to inference processes, and also [14], especially the comparative table in Chapter 9,
for an excellent résumé of the current state of knowledge concerning this topic).
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ME stemming either from interpretations of probability arising from ideas in statis-
tical mechanics (see [15],[16], [26]), or from axiomatic treatments of the concept of
information itself (as in [34], [31], [6]). While both of the latter kinds of treatment
are conceptually attractive it may be argued that they carry more philosophical
baggage than does a purely axiomatic treatment of the formal desiderata to be sat-
isfied by an inference process itself .

We should note that in the framework of Paris, Vencovská, and their followers, the
atoms α1, α2, . . . αJ are usually taken to be the atoms of the Lindenbaum algebra
for a finite language of the propositional calculus with propositional variables say
p1 . . . pn . In such a case J is 2n and so is necessarily a power of 2. Such a presen-
tation, which adds an extra semantic layer, has certain conceptual advantages in
the formulation and justification of certain natural principles such as the language
invariance and irrelevant information principles of [28]. However since we shall not
consider principles of this type in the present paper , we shall assume that the mu-
tually exclusive and exhaustive atoms α1, α2, . . . αJ are given a priori, rather than
being generated by the set of propositional variables of an underling language, and
we may then allow J to take any positive integral value.

An apparently very different framework of probabilistic inference has been much
studied in the decision theoretic literature. Given possible outcomes α1, α2, . . . αJ

as before, let {Ai | i = 1 . . . m} be a finite set of agents each of whom possesses
his own particular probabilistic belief function w(i) on the set of outcomes, and let
us suppose that these w(i) have already been determined. How then should these
individual belief functions be aggregated so as to yield a single probabilistic belief
function v which most accurately represents the collective beliefs of the agents?
We call such an aggregated belief function a social belief function, and a general
method of aggregation a pooling operator. Again we can ask: what principles should
a pooling operator satisfy? In this framework various plausible principles have
been investigated extensively in the literature, and have in particular been used to
characterise two popular, but very different pooling operators LinOp and LogOp.
LinOp takes v to be the arithmetic mean of the w(i), i.e.

vj =
1
m

m∑

i=1

w
(i)
j for each j = 1 . . . J

whereas LogOp chooses v to be the normalised geometric mean given by:

vj =
(
∏m

i=1 w
(i)
j )

1
m

∑J
k=1(

∏m
i=1 w

(i)
k )

1
m

for each j = 1 . . . J

Various continua of other pooling operators related to LinOp and LogOp have
also been investigated. However the existing axiomatic analysis of pooling oper-
ators, while technically simpler than the analysis of inference processes, is also
more ambiguous and perhaps less intellectually satisfying in its conclusions than
the analysis of inference processes developed within the Paris-Vencovská frame-
work ; in the former case one arrives at rival, apparently plausible, axiomatic
characterisations of various pooling operators, including in particular LinOp and
LogOp, without any very convincing foundational criteria for deciding, within
the limited context of the framework, which operator is justified, if any. (See
[7],[12],[5],[8],[10],[11],[13],[25],[36],[37] for further discussion of the axiomatics of
pooling operators).
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In the present paper we seek to provide an axiomatic framework to extend the Paris-
Vencovská notion of inference process to the multiagent case, thereby encompassing
both the Paris-Vencovská framework of inference processes and the framework of
pooling operators as special, or marginal, cases. To this end we consider, for any
m ≥ 1, a set M consisting of m individuals A1 . . .Am , each of whom possesses his
own nice set of constraints, respectively K1 . . .Km , on his possible belief function
on the set of outcomes {α1, α2, . . . αJ} . (Note that we are only assuming here that
the beliefs of each individual are consistent, not that the beliefs of different indi-
viduals are jointly consistent). We shall refer to such a set M of individuals as a
college. The intuitive problem now is how the college M should choose a single belief
function which best represents the totality of information conveyed by K1 . . .Km .

Definition 1.1

Let C denote a given fixed class of constraints sets. A social inference process for C is
a function , F , which chooses, for any m ≥ 1 and constraint sets K1 . . .Km ∈ C,
a probability function on {α1, α2, . . . αJ} , denoted by F(K1 . . .Km) , which we re-
fer to as the social belief function defined by F acting on K1 . . .Km.

When considering general properties of unspecified social inference processes, we
may not specify exactly what the class C is, but in general we shall always assume
that C is a class of nice constraint sets.

Note that, trivially, provided that when m = 1 F(K) ∈ VK for all K ∈ C, F
marginalises to an inference process. On the other hand, in the special case where
K1 . . .Km are such that VKi is a singleton for all i = 1 . . .m , then F marginalises
to a pooling operator. The new framework therefore encompasses naturally the two
classical frameworks described above.

Again we can ask: what principles would we wish such a social inference process
F to satisfy in the absence of any further information? Is there any social infer-
ence process F which satisfies them? If so, to which inference process and to which
pooling operator does such an F marginalise? It turns out that merely by posing
these questions in the right framework, and by making certain simple mathemati-
cal observations, we can gain considerable insight. It is however essential to note
that our standpoint is strictly that of a logician: we insist on the absoluteness of
the qualification above that we are given no further information than that stated
in the problem. In particular we are given no information about the expertise of
the individuals or about the independence of their opinions. This insistence on
sticking to a problem where the available information is rigidly defined is absolutely
essential to our analysis, just as it is in the analysis of inference processes by Paris
and Vencovská and their followers. We make no apology for the fact that such an
assumption is almost always unrealistic: in order to tackle difficult foundational
problems it is necessary to start with a general but precisely defined problematic.
As has in essence been pointed out by Paris and Vencovská, unless one is prepared
to make certain assumptions which precisely delimit the probabilistic information
under consideration, even the classical notion of an inference process becomes in-
coherent. Indeed failure to define precisely the information framework lies behind
several so-called paradoxes of reasoning under uncertainty5.

5The interested reader may consult [30] for a detailed analysis of this point in connection with
supposed paradoxes arising from “representation dependence”.
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2 An Axiomatic Framework for a Social Inference
Process

The underlying idea of a social inference process is not new. (See e.g. [21],[25],
[17],[18] for some specific ideas in the literature which are related, but formulated
with far less generality). However, to the author’s knowledge, the work which has
been done hitherto has largely been pragmatically motivated, and has not con-
sidered foundational questions. This is possibly due in part to a rather tempting
reductionism, which would see the problem of a finding a social inference process as
a two stage process in which a classical inference process is first chosen and applied
to the constraints Ki of each agent i to yield a belief function w(i) appropriate to
that agent, and a pooling operator is then chosen and applied to the set of w(i)

to yield a social belief function6. Of course from this reductionist point of view a
social inference process would not be particularly interesting foundationally, since
we could hardly expect an analysis of such social inference processes to tell us any-
thing fundamentally new about collective probabilistic reasoning.

Our approach is in this respect completely different. We reject the two stage ap-
proach above on the grounds that the classical notion of an inference process applies
to an isolated single individual, and is valid only on the assumption that that in-
dividual has absolutely no knowledge or beliefs other than those specified by his
personal constraint set. Indeed the preliminary point should be made that in the
case of an isolated individual A, whereas A’s constraint set K is subjective and
personal to that individual, the passage from K to A’s assumed belief function w
via an inference process should be made using rational or normative principles, and
should therefore be considered to have an intersubjective character. We should not
confuse the epistemological status of w with that of K. By hypothesis K represents
the sum total of A’s beliefs; ipso facto K also represents, in general, a descrip-
tion of the extent of A’s ignorance. Thus while w may be regarded as the belief
function which best represents A’s subjective beliefs, it must not be confused with
those beliefs themselves, since in the passage from K to w it is clear that certain
“information” has been discarded7; thus, while w is determined by K once an in-
ference process is given, neither K nor VK can be recaptured from w. As a trivial
example we may note that specifying that A’s constraint set K is empty, i.e. that
A claims total ignorance, is informationally very different from specifying that K
is such that VK = {< 1

J , 1
J . . . 1

J >}, although the application of ME, or of any
other reasonable inference process, yields w = < 1

J , 1
J . . . 1

J > in both cases.

From this point of view the situation of an individual who is a member of a college
whose members seek to collaborate together to elicit a social belief function seems
quite different from that of an isolated individual. Indeed in the former context it
appears more natural to assume as a normative principle that, if the social belief
function is to be optimal, then each individual member Ai should be deemed to
choose his personal belief function w(i) so as to take account of the information
provided by the other individuals, in such a way that w(i) is consistent with his
own belief set Ki, while being as informationally close as possible to the social
belief function F(K1 . . .Km) which is to be defined. We will show in section 3

6We note that by no means are all authors reductionist in this sense: in particular although
their concerns are somewhat different from ours, neither [25] nor [21] make such an assumption.

7The word “information” is used here in a different sense from that of Shannon information.
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that this key idea is indeed mathematically coherent and can be used to define a
particular social inference process with remarkable properties. Notice however that
it is not necessary to assume that a given Ai subjectively or consciously holds the
particular personal belief function w(i) which is attributed to him by the procedure
above: such an w(i) is viewed as nothing more than the belief function which Ai

ought rationally to hold, given the personal constraint set Ki which represents his
own beliefs, together with the extra information available to him by virtue of his
knowledge of the constraint sets of the remaining members of the college. Just as
in the case of an isolated individual, the passage from Ai’s actual subjective belief
set Ki to his notional subjective belief function w(i) has an intersubjective or nor-
mative character: however the calculation of w(i) now depends not only on Ki but
on the belief sets of all the other members of the college.

Considerations similar to the above give rise to an important general principle which
a social inference process should satisfy, which we will call the collegial principle.
However before we introduce this principle below, we shall first state some more
obvious principles: mostly these are obvious transfers of familiar symmetry axioms
from the theory of inference processes or from social choice theory.

The Equivalence Principle

If for all i = 1 . . .m VKi = VK′
i then

F(K1 . . .Km) = F(K′
1 . . .K′

m)

.
2

Otherwise expressed the Equivalence Principle states that substituting constraint
sets which are equivalent in the sense that the set of belief functions which satisfy
them is unchanged will leave the values of F invariant. This principle is a familiar
one adopted from the theory of inference processes (cf. [28]). In this paper we shall
always consider only social inference processes (or inference processes) which sat-
isfy the Equivalence Principle. For this reason we may occasionally allow a certain
sloppiness of notation in the sequel by identifying a constraint set K with its set of
solutions VK where the meaning is clear and this avoids an awkward notation. In
particular if ∆ is a non-empty closed convex set of belief functions then we may
write ME(∆) to denote the unique w ∈ ∆ which maximises the Shannon entropy
function.

The Anonymity Principle

This principle states that F(K1 . . .Km) depends only on the multiset of constraint
sets {K1 . . .Km} and not on the characteristics of the individuals with which the
Ki’s are associated nor the order in which the Ki’s are listed.

2

The following natural principle ensures that F does not choose a belief function
which violates the beliefs of some member of the the college unless there is no
alternative. The principle also ensures that F behaves like a classical inference
process in the special case when m = 1.
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The Consistency Principle

If K1 . . .Km are such that
m⋂

i=1

VKi 6= ∅

then

F(K1 . . .Km) ∈
m⋂

i=1

VKi

2

The following principle is again a familiar one satisfied by classical inference pro-
cesses (see [28]):

Let σ denote a permutation of the atoms of S. Such a σ induces a corresponding
permutation on the coordinates of probability distributions < w1 . . . wJ >, and on
the corresponding coordinates of variables occurring in the constraints of constraint
sets Ki, which we denote below with an obvious notation.

The Atomic Renaming Principle

For any permutation σ of the atoms of S, and for all K1 . . .Km

F(σ(K1) . . . σ(Km)) = σ(F(K1 . . .Km))

.
2

We now state the important principle referred to earlier:

The Collegial Principle

A social inference process F satisfies the Collegial Principle (abbreviated to Colle-
giality) if for any m ≥ 1 and A1 . . .Am with respective constraint sets K1 . . .Km ,
if for some k < m F(K1 . . .Kk) is consistent with Kk+1 ∪Kk+2 ∪ . . . ∪Km, then

F(K1 . . .Km) = F(K1 . . .Kk)

2

Collegiality may be interpreted as stating the following: if the social belief function
v generated by some subset of the college is consistent with the individual beliefs
of the remaining members, then v is also the social belief function of the whole
college. In particular this means that adding to the college a new individual whose
constraint set is empty will leave the social belief function unchanged.

The consistency and collegiality principles together immediately imply that F sat-
isfies the following unanimity property:
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Lemma 2.1

If F satisfies Consistency and Collegiality then for any K

F(K . . .K) = F(K) .

2

Our next axiom goes to the heart of certain basic intuitions concerning probability.
For expository reasons we will consider first the case when m = 1 , in which case we
are essentially discussing a principle to be satisfied by a classical inference process.
First we introduce some fairly obvious terminology.

Let w denote A1’s belief function. (Since we are considering the case when m = 1 we
will drop the superscript from w(1) for ease of notation). For some non-empty set of
atoms {αj1 . . . αjt

} let φ denote the event
∨t

r=1 αjr
. Suppose that K denotes a set

of constraints on the variables wj1 . . . wjt which defines a non-empty closed convex
region of t-dimensional Euclidean space with

∑t
r=1 wjr ≤ 1 and all wjr ≥ 0 . We

shall refer to such a K as a nice set of constraints about φ. Such a set of constraints
K may also be thought of as a constraint set on the w which determines a closed
convex region VK of DJ defined by

VK = {w | < wj1 . . . wjt > satisfiesK }.

Now let ŵr denote w(αjr | φ) for r = 1 . . . t, with the ŵr undefined if w(φ) = 0.
Then ŵ =< ŵ1 . . . ŵt > is a probability distribution provided that w(φ) 6= 0. Let
K be a nice set of constraints on the probability distribution ŵ: we shall refer to
such a K as a nice set of constraints conditioned on φ. In line with our previ-
ous conventions we shall consider such K to be trivially satisfied in the case when
w(φ) = 0.

Again an important point here is that while a nice set of constraints K conditioned
on φ as above is given as a set of constraints on ŵ it can equally well be interpreted
as defining a certain equivalent set of constraints on w instead, and it is easy to see
that, with a slight abuse of notation, the corresponding region VK of DJ defined
by

VK = {w | ŵ satisfiesK }
is both convex and closed.

In what follows we may regard both a nice set of constraints conditioned on some
event φ, and a nice set of constraints about some event φ, as if they defined con-
straints on the probability function w, as explained above.

Notice that while a nice set of constraints conditioned on φ can say nothing about
the value of belief in φ itself, a nice set of constraints about φ may do so, and may
even fix belief in φ at a particular value.

The following principle captures a basic intuition about probabilistic reasoning
which is valid for all standard inference processes:
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The Locality Principle (for an Inference Process)

An inference process I satisfies the locality principle if for all sentences φ and θ ,
every nice set of constraints K conditioned on φ, and every nice set of constraints
K∗ about ¬φ,

I(K ∪ K∗) (θ | φ) = I(K) (θ | φ)

provided that I(K ∪ K∗) (φ) 6= 0 and I(K) (φ) 6= 0

2

Let us refer to the set of all events which logically imply the event φ as the world
of φ. Then the Locality Principle may be roughly paraphrased as saying that if
K contains only information about the relative size of probabilistic beliefs about
events in the world of φ, while K∗ contains only information about beliefs con-
cerning events in the world of ¬φ , then the values which the inference process I
calculates for probabilities of events conditioned on φ should be unaffected by the
information in K∗, except in the trivial case when belief in φ is forced to take the
value 0. Put rather more more succinctly: beliefs about the world of ¬φ should not
affect beliefs conditioned on φ. Note that we cannot expect to satisfy a strength-
ened version of this principle which would have belief in the events in the world of
φ unaffected by K∗ since the constraints in K∗ may well affect belief in φ itself.
Thus the Locality Principle asserts that, ceteris paribus, rationally derived relative
probabilities between events inside a “world” are unaffected by information about
what happens strictly outside that world.

The Locality Principle is in essence a combination of both the Relativisation Prin-
ciple8 of Paris [28] and the Homogeneity Axiom of Hawes [14] . The following
theorem, which demonstrates that the most commonly accepted inference processes
all satisfy Locality, is very similar to results proved previously, especially to results
in [14]. It follows from the theorem below that if we reject the Locality Principle
for an inference process, then we are in effect forced to reject not just ME, but also
all currently known plausible inference processes, including all inference processes
derived by maximising a generalised notion of entropy. This is an important point
heuristically when we come to extend the Locality Principle to the multiagent case.9

Theorem 2.2

The inferences processes ME, CM∞, MD (minimum distance), together with all
Renyi10 inference processes, and the Maximin inference process of [14], all satisfy
the Locality Principle.

8We note here that Csiszár in [3],[4], introduces a property which he calls locality, but which
corresponds to the relativisation principle of Paris [28] and is much weaker than the notion of
locality in the present paper.

9The proof of Theorem 2.2 is not however germane to understanding the remainder of this
paper and may be safely be skipped if the reader so wishes.

10Renyi inference processes are those which maximise one of the family of generalised notions
of entropy due to Alfred Renyi (see [31], [32], [14], [28], [23]). A definition of Renyi processes is
given below in the proof of 2.2.
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Proof:

Let F be a real valued function defined on the domain
⋃

J∈N+

[0, 1]J

by

F (w) =
J∑

j=1

f(wj) (1)

for some function f : [0, 1] → R .

We will say that F is deflation proof if for every J ∈ N+ ,
all w, u ∈ DJ , and every λ ∈ (0, 1)

F (λw) < F (λv) if and only if F (w) < F (v) (2)

Here λw denotes the scalar multiplication of w by λ . Note that λw will not be
a vector in DJ in the above case since its coordinates sum to λ instead of 1.

We will see below that any inference process I such that I(K) is defined to be
that point v ∈ VK which maximises a strictly convex deflation proof function F
of the above form satisfies the locality principle.

We first note the following lemma:

Lemma 2.3

The inference processes listed in the statement of Theorem 2.2, with the exception
of CM∞ and Maximin , may all be defined by the maximisation of deflation proof
strictly convex functions of the form (1) above.

Proof:

The inference process ME is defined by maximising

F (w) = −
J∑

j=1

wj logwj

subject to the given constraints. Now for w ∈ DJ

F (λw) = −
J∑

j=1

λwj log λwj = − λ logλ + λ F (w)

from which (2) follows at once.

The Renyi inference process RENr , where r is a fixed positive real parameter not
equal to 1 , is given by maximising the function

F (w) = −
J∑

j=1

(wj)r
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for w ∈ VK in the case when r > 1 , and by maximising

F (w) =
J∑

j=1

(wj)r

for w ∈ VK in the case when 0 < r < 1 .

Since for the above functions F (λw) = λr F (w) , they also trivially satisfy (2)
and so are deflation proof. Note that the minimum distance inference process MD
is just REN2 . The functions F defined above are all strictly convex (see e.g.
[28])) and so the lemma follows.

Returning to the main proof, let I be an inference process such that I(K) is defined
by the maximisation of a deflation proof strictly convex function F of the form as
in (1) above. Let φ θ , K , and K∗ be as in the statement of the locality principle.
Without loss of generality we may assume for notational convenience that the atoms
are so ordered that for some k with 1 ≤ k < J

φ ≡
k∨

j=1

αj and ¬φ ≡
J∨

j=k+1

αj

Let u = SEP(K) and let v = SEP(K ∪K∗) . Let u(φ) = a and let v(φ) = b .
By hypothesis we know that a and b are non-zero. It suffices for us to show that

<
v1

b
. . .

vk

b
> = <

u1

a
. . .

uk

a
> (3)

Now notice that since the constraints of K∗ refer only to coordinates k + 1 . . . J
while the constraints of K refer only to coordinates 1 . . . k , the solution v which
by definition maximises

∑J
j=1 f(wj) subject to the condition that w ∈ VK∪K∗ ,

must also satisfy the condition that < v1 . . . vk > is that vector < w1 . . . wk > which
maximises

∑k
j=1 f(wj) subject to < w1

b . . . wk

b > satisfying the constraints of K

together with the constraint that
∑k

j=1 wj = b . Now changing variables by
setting yj = wj

b , with y = < y1 . . . yk > this is equivalent to maximising

F (by) =
k∑

j=1

f(byj)

subject to y ∈ Dk and y satisfying the constraints of K . However since F
is deflation proof (and strictly convex) the unique y ∈ Dk which achieves this
maximisation does not depend on b and by setting b = 1 we see that it is just
the unique vector y ∈ Dk maximising F (y) and satisfying the constraints in
K . Since this definition is independent of both K∗ and b , it follows by replacing
K∗ by the empty set of constraints and b by a that equation (3) holds, which
completes the proof for the case of inference processes defined by the maximisation
of a deflation proof strictly convex function of the form (1) above. By lemma 2.3
the theorem follows for all the inference processes mentioned except for CM∞ and
Maximin .

The fact that the limit centre of mass inference process, CM∞ , satisfies locality
may either be proved using the standard definition of CM∞ in [28], and slightly
modifying the idea of the proof above, or simply by observing that by a result of
Hawes [14], for any constraint set K

CM∞(K) = limr→0+ RENr(K)
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and then applying the results above already proved for RENr .
The result for Maximin also follows easily from results in Hawes [14]. This com-
pletes the proof of 2.2.

2

While Theorem 2.2 above merely provides very strong corroborating evidence in
favour of accepting the Locality Principle for an inference process, an interesting
aspect of the intuition underlying the principle is that the justification for it ap-
pears no less cogent when we attempt to generalise it to the context of a social
inference process. If we accept the intuition in favour of the Locality Principle in
the case of a single individual then it is hard to see why we should reject analogous
arguments in the case of a social belief function which is derived by considering the
beliefs of m individuals each of whom has constraint sets of the type considered
above. The argument is a general informational one: if information about proba-
bilities conditioned on φ is unaffected by information about the world of ¬φ, then,
ceteris paribus, this should be true regardless of whether the information is obtained
from one agent or from many agents. Accordingly we may formulate more generally

The Locality Principle (for a Social Inference Process)

For any m ≥ 1 let M be a college of m individuals A1 . . .Am . If for each i =
1 . . .m Ki is a nice set of constraints conditioned on φ, and K∗

i is a nice set of
constraints about ¬φ, then for every event θ

F(K1 ∪ K∗
1, . . . ,Km ∪ K∗

m) (θ | φ) = F(K1 , . . . ,Km) (θ | φ)

provided that F(K1 ∪ K∗
1, . . . , Km ∪ K∗

m) (φ) 6= 0
and F(K1 , . . . Km) (φ) 6= 0 .

2

At this point we make a simple observation. In the very special marginal case when
for each i the constraint sets Ki ∪ K∗

i are such as to completely determine Ai’s be-
lief function, so that the task of F reduces to that of a pooling operator, the locality
principle above reduces to a condition closely related to the well-known condition
on a pooling operator that it be externally Bayesian. 11 The Locality Principle
may therefore be interpreted as a generalisation of a suitably formulated property
of external Bayesianity. We will not discuss this further here except to note the
important point that if F is taken to satisfy Locality, then this fact alone seriously
restricts those pooling operators to which it is possible for F to marginalise. Thus
while LogOp satisfies the relevant cases of Locality, as follows from Theorem 3.9 be-
low, the popular pooling operator LinOp does not do so. To give a counterexample
for LinOp, let J = 3 , let θ = α1 ∨ α2 and let

K1 = {w(α1 | θ) = 2
3 } and K∗

1 = {w(¬θ) = 1
4 }

K2 = {w(α1 | θ) = 1
3 } and K∗

2 = {w(¬θ) = 5
6 }

Then the unique belief function satisfying K1 ∪ K∗
1 is w(1) =< 1

2 , 1
4 , 1

4 > while
the unique belief function satisfying K2 ∪ K∗

2 is w(2) = < 1
18 , 1

9 , 5
6 > .

11This condition was first formulated by Madansky [22] in 1964 and further analyzed in [9] and
[13], where it is shown that the only externally Bayesian pooling operators are closely related to
LogOp. See also [12] for related properties of pooling operators.
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Applying LinOp we obtain

LinOp(K1 ∪ K∗
1 , K2 ∪ K∗

2 ) (α1 | θ) = 20
33

If we now set

K∗∗
1 = {w(¬θ) = 3

4 } and K∗∗
2 = {w(¬θ) = 1

2 }
then the unique belief function satisfying K1 ∪ K∗∗

1 is w(1) = < 1
6 , 1

12 , 3
4 > while

the unique belief function satisfying K2 ∪ K∗∗
2 is w(2) = < 1

6 , 1
3 , 1

2 > .

Applying LinOp gives

LinOp(K1 ∪K∗∗
1 , K2 ∪K∗∗

2 ) (α1 | θ) = 4
9 6= LinOp(K1 ∪K∗

1 , K2 ∪K∗
2 ) (α1 | θ)

showing that Locality fails for any F which marginalises to the pooling operator
LinOp.

By contrast it is easily verified that

LogOp(K1 ∪K∗∗
1 , K2 ∪K∗∗

2 ) (α1 | θ) = 1
2 = LogOp(K1 ∪K∗

1 , K2 ∪K∗
2 ) (α1 | θ)

as expected.

Related facts concerning LinOp and LogOp have been widely noted in the litera-
ture on pooling operators; what we are noting that is new here is that arguments
in favour of the Locality Principle in the far broader context of a social inference
process give a quite new perspective on the relative acceptability of classical pooling
operators such as LogOp and LinOp.

Our final axiom relates to a hypothetical situation where several exact copies of a
college are amalgamated into a single college.

A clone of a member Ai of M is a member Ai′ whose set of belief constraints on
his belief function is identical to that of Ai: i.e. Ki =Ki′ . Suppose now that each
member Ai of M is replaced by n clones of Ai, so that we obtain a new college M*
with nm members. M* may equally be regarded as k copies of M amalgamated
into a single college; so since the social belief function associated with each of these
copies of M would be the same, we may argue that surely the result of amalgamating
the copies into a single college M* should again yield the same social belief function.

For any constraint set K let nK stand for a a sequence of n copies of K. Then the
heuristic argument above generates the following:

The Proportionality Principle

For any integer n > 1

F(nK1, nK2, . . . , nKm) = F(K1, K2, . . . ,Km)

2
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The proportionality principle looks rather innocent. Nevertheless we shall see in
section 4 that a slight variant of the same idea formulated as a limiting version has
some surprising consequences.

3 The Social Entropy Process (SEP)

In this section we introduce a natural social inference process, SEP, which extends
both the inference process ME and the pooling operator LogOp. Our heuristic
derivation of SEP will be purely information theoretic. We prove certain impor-
tant structural properties necessary to show that SEP is well-defined, and we show
in Theorem 3.9 that SEP satisfies the seven principles introduced in the previous
section.

In order to avoid problems with our definition of SEP however, we are forced to
add a slight further restriction to the set of m constraint sets K1 . . .Km which
respectively represent the beliefs sets of the individuals A1 . . .Am . We assume in
this section that the constraints are such that there exists at least one atom αj0

such that no constraint set Ki forces αj0 to take belief 0. In the special case when
each Ki specifies a unique probability distribution, the condition corresponds to
that necessary to ensure that LogOp is well-defined.

In order to motivate the definition of SEP heuristically, let us imagine that the
college M decide to appoint an independent chairman A0 , whom we may suppose
to be a mathematically trained philosopher, and whose only task is to aggregate
the beliefs of A1 . . .Am into a social belief function v according to strictly rational
criteria, but ignoring any personal beliefs which A0 himself may hold. He must
then convince the members of M that his method is optimal.

A0 decides that as an initial criterion he will choose a social belief function v =
< v1 . . . vJ > in such a manner as to minimize the average informational distance
between < v1 . . . vJ > and the m belief functions w(i) = < w

(i)
1 . . . w

(i)
J > of the

members of M, where the w(i) are each simultaneously chosen in such a manner
as to minimize this quantity subject to the relevant sets of belief constraints Ki of
each of the members of the college.

The standard measure of informational distance between probability distributions
v and u is the well-studied notion of cross-entropy, sometimes known as Kullback-
Leibler divergence, given by

CE(v, u) =
J∑

j=1

vj log
vj

uj

where the convention is observed that vj log vj

uj
takes the value 0 if vj = 0 and the

value +∞ if vj 6= 0 and uj = 0 .
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We recall that cross-entropy is not a symmetric function; intuitively in the con-
text of updating for a single agent CE(v,u) represents the informational distance
from old belief function u to new belief function v . Using this notion of informa-
tional distance A0 ’s idea is therefore to choose v and w(1) . . . w(m) with each w(i)

satisfying Ki , so as to minimize

1
m

m∑

i=1

CE(v,w(i))

We will see below that while such a procedure will not by itself always produce
unique belief functions for v and the associated w(1) . . . w(m) , the set of possible
belief functions satisfying these criteria has both a pleasant characterisation and a
tight mathematical structure.

A fundamental property of cross-entropy which we shall need is

Lemma 3.1 The Gibbs Inequality

For all belief functions v and u

CE(v, u) ≥ 0

with equality holding if and only if v = u .

Proof: See [20] or [28].

2

The next lemma allows us to express A0 ’s criterion above in a much more conve-
nient mathematical form.

Lemma 3.2

Let K1 . . .Km be constraint sets on belief functions w(1) . . . w(m) respectively.
Then the following are equivalent:

(i) The belief functions v , w(1), . . . w(m) minimize the quantity

1
m

m∑

i=1

CE(v,w(i)) (4)

subject to the given constraints.

(ii) The belief functions w(1) . . . w(m) maximize the quantity

J∑

j=1

[
m∏

i=1

w
(i)
j

] 1
m

(5)

subject to the given constraints, and

vj =

[∏m
i=1 w

(i)
j

] 1
m

∑J
j=1

[∏m
i=1 w

(i)
j

] 1
m

(6)

for all j = 1 . . . J .

16



Proof:

We note first that by our assumptions concerning the constraint sets, the minimum
value of (4) must be finite. For by assumption there exists some j0 and some
u(i) ∈ VKi such that u

(i)
j0

6= 0 for all i = 1 . . . m ; then by replacing each w(i)

by u(i) and setting vj0 = 1 and all other vj equal to zero gives (4) a finite value.
From this it follows that for any j if vj is non-zero then w

(i)
j is non-zero for all

i = 1 . . . m . Thus we can rewrite (4) as

J∑

j=1

vj log
vj[∏m

i=1 w
(i)
j

] 1
m

or, equivalently, as

J∑

j=1

vj log
vj( hQm

i=1 w
(i)
j

i 1
m

PJ
j′=1

hQm
i=1 w

(i)
j′
i 1

m

) − log
J∑

j′=1

[
m∏

i=1

w
(i)
j′

] 1
m

(7)

which, by the Gibbs inequality, will for any given w(1) . . . w(m) take its minimum
value when the first term vanishes and v is given by the expression at (6). On the

other hand the second term is minimized when
∑J

j′=1

[∏m
i=1 w

(i)
j′

] 1
m

is maximized.
It follows that the minimum possible value of (4) is obtained by first maximising
∑J

j′=1

[∏m
i=1 w

(i)
j′

] 1
m

subject to the constraints, and then letting v be determined
by the equation (6).

2

The above lemma shows that Chairman A0’s initial criterion for selecting appro-
priate v for consideration as the social belief function can be reduced to the prob-
lem of finding those sequences of belief functions w(1) . . . w(m) which maximize
∑J

j=1

[∏m
i=1 w

(i)
j

] 1
m

, subject to each w(i) satisfying the relevant set of constraints
Ki . Notice that the function being maximized above is just a sum of geometric
means. Since this function is bounded and continuous and the space over which it
is being maximized is by assumption closed, a maximum value is certainly attained.

In order to make our presentation more readable we shall in future abbreviate
K1 . . .Km by

#»

K .

Definition 3.3

For a sequence of constraint sets
#»

K we define

M #»
K = Max {

J∑

j=1

(
m∏

i=1

w
(i)
j )

1
m | w(i) ∈ VKi for all i = 1 . . . m }

2

It is now easy to see that
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Lemma 3.4

Given constraint sets K1 . . .Km and M #»
K defined as above then 0 < M #»

K ≤ 1 .
Furthermore the value M #»

K = 1 occurs if and only if for every j = 1 . . . J and for all
i, i′ ∈ {1 . . . m} w

(i)
j = w

(i′)
j . Hence given K1 . . .Km the following are equivalent:

1. M #»
K = 1

2. Every w(1) . . . w(m) which generates the value M #»
K satisfies

w(1) = . . . = w(m) = v.

3. The constraint sets K1 . . .Km are jointly consistent: i.e there exists some
belief function which satisfies all of them.

Proof:

Let w(1) . . . w(m) be belief functions satisfying K1 . . .Km respectively, and which
generate the value M #»

K . First note that by assumption for some j0 no Ki forces the
probability given to atom αj0 to be zero, and hence M #»

K > 0, since it is possible
to choose belief functions u(1) . . . u(m) respectively consistent with K1 . . .Km such

that
[∏m

i=1 u
(i)
j0

] 1
m

> 0.

Now by applying the arithmetic-geometric mean inequality m times we get

M #»
K =

J∑

j=1

(
m∏

i=1

w
(i)
j )

1
m ≤

J∑

j=1

1
m

m∑

i=1

w
(i)
j = 1 since

m∑

i=1

J∑

j=1

w
(i)
j = m.

Moreover since equality for any of the arithmetic-geometric mean inequalities oc-
curs just when all the terms are equal, the case M #»

K = 1 occurs if and only if
w(1) = w(1) = . . . = w(m) = v . This suffices to prove the lemma.

2

Now it is obvious from the above that chairman A0’s proposed method of choos-
ing v will not in general result in a uniquely defined social belief function. Indeed
if

⋂m
i=1 VKi 6= ∅ then any point w in this intersection, if adopted as the belief

function of each member, will generate the maximum possible value for M #»
K of 1

and so will be a possible candidate for a social belief function v. Moreover even if⋂m
i=1 VKi = ∅ the process above may not result in a unique choice of either the

w(i) or of v.

Chairman A0 now reasons as follows: if the result of the above operation of min-
imizing the average cross-entropy does not result in a unique solution for v, then
the best rational recourse which he has left is to choose that v which has maximum
entropy from the set of possible v previously obtained, assuming of course that such
a choice is well-defined. Chairman A0 reasons that by adopting this procedure he
is treating the set of v defined by minimizing the average cross-entropy of v with
possible belief functions of college members as if that were the set of his own pos-
sible belief functions, and then choosing a belief function from that set by applying
the ME inference process, as he would if that were indeed the case.

However in order to show that this procedure is well-defined chairman A0 needs to
prove certain technical results.

Definition 3.5

18



For constraint sets
#»

K we define

Γ(
#»

K) = {< w(1) . . . w(m) > ∈
m⊗

i=1

VKi |
J∑

j=1

[
m∏

i=1

w
(i)
j

] 1
m

= M #»
K }

By 3.2, each point < w(1) . . . w(m) > in Γ(
#»

K) gives rise to a uniquely determined
corresponding social belief function v whose j’th coordinate is given by

vj =
1

M #»
K

(
m∏

i=1

w
(i)
j )

1
m

We will refer to the v thus obtained from < w(1) . . . w(m) > as

LogOp(w(1) . . . w(m))

and we let

∆(
#»

K) = {LogOp(w(1) . . . w(m)) | < w(1) . . . w(m) >∈ Γ(
#»

K) }

2

∆(
#»

K) is thus the candidate set of possible social belief functions from which Chair-
man A0 wishes to make his final choice by selecting the point in this set which has
maximum entropy.

From now on we shall abbreviate a typical point < w(1) . . . w(m) > in
⊗m

i=1 VKi

by #»w . For any such #»w we denote the vector < w
(1)
j . . . w

(m)
j > by wj . Thus we

may think of #»w as an m×J matrix with rows w(i) , columns wj , and individual
entries w

(i)
j .

Our problem is to analyze the linked structures of Γ(
#»

K) and ∆(
#»

K) , and in
particular to show that ∆(

#»

K) is convex. A slight complicating factor in this
analysis turns out to be the possibility that some entries in a matrix #»w ∈ Γ(

#»

K)
may turn out to be zero. Notice that the corresponding social belief function v will
have j’th coordinate vj equal to zero if and only if some entry in the column vector
wj is equal to zero. Such zero entries vj may be classified as of two possible kinds:
either vj = 0 because for some i the constraint set Ki forces w

(i)
j = 0 , or, when

this is not the case, because for some i w
(i)
j = 0 just happens to be zero. The

first case is in a certain sense trivial since for an arbitrary #»w ∈ ⊗m
i=1 VKi the

columns wj corresponding to such j will make zero contribution to the function to
be maximised. For this reason it is convenient to introduce a notation which allows
us to eliminate such j from consideration. Accordingly, for given

#»

K , we define
the set of significant j, Sig #»

K by:

Sig #»
K = { j | for no i is it the case that w

(i)
j = 0 for all w(i) ∈ VKi}

Notice that by our initial assumption about
#»

K at the beginning of this section
Sig #»

K is non-empty.
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For any #»w ∈ ⊗m
i=1 VKi we now define #»wSig #»

K
to be the projection of #»w

on to those coordinates (i, j) such that j ∈ Sig #»
K ; i.e. #»wSig #»

K
may be viewed

as the matrix obtained from the matrix #»w by deleting those columns j for which
j /∈ Sig #»

K . Similarly for any probability function w we define wSig #»
K

to be the
projection of w to a vector obtained by deleting those coordinates which are not
in Sig #»

K. (Notice however that the effect of this is that the sum of the components
of such a wSig #»

K
may be less than unity). Similarly we define

ΓSig(
#»

K) = { #»wSig #»
K

| #»w ∈ Γ(
#»

K) }

and

∆Sig(
#»

K) = { vSig #»
K

| v ∈ ∆(
#»

K) }

Note that in contrast to the situation for the row vectors of a matrix in ΓSig(
#»

K) ,
the components of any vector in ∆Sig(

#»

K) do sum to unity, and that there is
therefore a trivial homeomorphism between ∆Sig(

#»

K) and ∆(
#»

K) .

The next theorem, which guarantees that Chairman A0’s plan is realisable, provides
a crucial structure theorem for Γ(

#»

K) and ∆(
#»

K) , which depends strongly on the
concavity properties of the geometric mean function and of sums of such functions.12

Theorem 3.6

Let
#»

K be a fixed vector of constraint sets such that ∆(
#»

K) is not a singleton.

(i) Let #»w ∈ ΓSig(
#»

K) , and let v be the corresponding point in ∆Sig(
#»

K) .
Then for each j ∈ Sig #»

K then either w
(i)
j = 0 for all i = 1 . . .m or w

(i)
j is

nonzero for all i = 1 . . . m .

Furthermore in the case when w
(i)
j is nonzero for all i = 1 . . . m , if

#  »

w′ is any
other point in ΓSig(

#»

K) with corresponding point v′ in ∆Sig(
#»

K) , then

w′
j = (1 + µj)wj for some µj ∈ R with µj ≥ −1.

and hence also
v′j = (1 + µj)vj

(ii) There is a point #»w ∈ ΓSig(
#»

K) with corresponding v ∈ ∆Sig(
#»

K) such that
for every other point

#  »

w′ ∈ ΓSig(
#»

K) with corresponding v′ ∈ ∆Sig(
#»

K) , for
each j ∈ Sig #»

K there exists µj ≥ −1 such that

w′
j = (1 + µj)wj

and
v′j = (1 + µj)vj

(iii) The regions ΓSig(
#»

K) , ∆Sig(
#»

K) , Γ(
#»

K) , and ∆(
#»

K) are all compact and con-
vex.

12An earlier version of this theorem which was stated without proof in [38] contains an error
because the statement of the result is incorrect for cases in which 0’s appear in the coordinates.
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(iv) If LogOpSig denotes the function defined on ΓSig(
#»

K) by restricting the
definition of the LogOp function defined on Γ(

#»

K) in 3.5 above to those j which
are in Sig #»

K , then

LogOpSig : ΓSig(
#»

K) → ∆Sig(
#»

K)

is a continuous bijection.

Proof:

Define the function F :
⊗m

i=1 DJ → R : by

F( #»w ) =
J∑

j=1

[
m∏

i=1

w
(i)
j

] 1
m

This is this function which is to be maximised for #»w ∈ ⊗m
i=1 VKi

in order to
define the points in the region Γ(

#»

K) . We note first of all that for non-negative
arguments the geometric mean function is always concave (see e.g. [2] ) and hence
a sum of such functions is also concave. Since the region

⊗m
i=1 VKi is convex

and compact by its definition, it follows that F attains a maximum value and hence
that Γ(

#»

K) is non-empty. Moreover it is an easy consequence of the definition of a
concave function that the set of points which give maximal value to such a function
over a compact convex region itself forms a compact convex set. Thus Γ(

#»

K) is
compact and convex. Since both compactness and convexity are preserved by pro-
jections in Euclidean space it follows that ΓSig(

#»

K) is also compact and convex.

Let [
⊗m

i=1 VKi ]
Sig #»

K denote the projection of
⊗m

i=1 VKi onto those coordinates
with j ∈ Sig #»

K . This region is also compact and convex. Then if we define FSig

for any #»w ∈ ⊗m
i=1 VKi by

FSig( #»wSig #»
K

) =
∑

j∈Sig #»
K

(
m∏

i=1

w
(i)
j )

1
m

then it is clear that

FSig( #»wSig #»
K

) = F( #»w )

so that it suffices for us to confine our analysis to FSig acting on the points in
[
⊗m

i=1 VKi ]
Sig #»

K .

Now let us consider a general point #»a ∈ ΓSig(
#»

K) . We will show that for ev-
ery j ∈ Sig #»

K we cannot have that a
(i)
j = 0 while a

(i′)
j 6= 0 for some

i, i′ ∈ {1 . . .m} . Suppose for contradiction that such j, i and i′ exist. We first
note that there exists some

#»

b ∈ [
⊗m

i=1 VKi ]
Sig #»

K such that b
(i)
j 6= 0

for all i = 1 . . .m and all j ∈ Sig #»
K . This follows from the convexity of

[
⊗m

i=1 VKi ]
Sig #»

K since for each particular i and j we can by our assumptions
choose some #»x ∈ [

⊗m
i=1 VKi ]

Sig #»
K such that x

(i)
j 6= 0 and by convexity we can

then form a suitable
#»

b by taking the arithmetic mean of all these. So let us fix
some such

#»

b .

Let #»u =
#»

b − #»a . Then by convexity, for any λ ∈ [0, 1] , the point #»a + λ #»u is
in [

⊗m
i=1 VKi ]

Sig #»
K . Note that by the definition of

#»

b , for all i and j if a
(i)
j = 0
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then u
(i)
j > 0 .

Consider the behaviour of FSig( #»a + λ #»u) as λ → 0. Now differentiating with
respect to λ we get

dF
dλ

Sig

( #»a + λ #»u) =
1
m

∑

j∈Sig #»
K




[
m∏

i=1

(a(i)
j + λu

(i)
j )

] 1
m m∑

i=1

u
(i)
j

a
(i)
j + λu

(i)
j




As λ → 0+ we see that all terms on the right hand side are bounded except in the
case of those i, j where a

(i)
j = 0 and at least one a

(i′)
j is non-zero for some i′ 6= i, in

which case that term tends to +∞. Since we are supposing that such j, i and i′ do
exist, it follows that FSig is increasing as #»a + λ #»u moves away from #»a , and hence
since FSig is continuous at #»a , #»a cannot be a maximum point of [

⊗m
i=1 VKi

]Sig #»
K ,

contradicting hypothesis. Thus we have shown that for any point #»w in ΓSig(
#»

K) if
some column vector of #»w has a zero entry then that column vector is identically
zero, which establishes the first part of (i).

The second part of (i) follows directly from (ii), so we will prove (ii) instead.
By (i) and the convexity of ΓSig(

#»

K) there exists an #»a such that if there exists
any

#»

b in ΓSig(
#»

K) for which for some j in Sig #»
K bj is not a zero vector then

all the entries of aj are non-zero. Let us fix such an #»a and let
#»

b be any other
point in ΓSig(

#»

K) . Again we consider #»u =
#»

b − #»a for λ ∈ [0, 1] , noting that in
this case by the convexity of ΓSig(

#»

K) , #»a + λ #»u is a point of ΓSig(
#»

K) , and hence
FSig ( #»a + λ #»u) = M #»

K and so has constant value.

Let Sig∗#»
K

denote {j | j ∈ Sig #»
K and aj 6= 0} . Then by the definition of #»a and of

Sig∗#»
K

FSig ( #»a + λ #»u) =
∑

j∈Sig∗#»
K

(
m∏

i=1

(a(i)
j + λu

(i)
j ))

1
m

Noting that all the a
(i)
j occurring on the right are by definition non-zero, differen-

tiating twice with respect to λ we have

d2F
dλ2

Sig

( #»a+λ #»u) =
1

m2

∑

j∈Sig∗#»
K

[
m∏

i=1

(a(i)
j + λu

(i)
j )

] 1
m




[
m∑

i=1

u
(i)
j

a
(i)
j + λu

(i)
j

]2

− m

m∑

i=1

(u(i)
j )2

(a(i)
j + λu

(i)
j )2




Since FSig is constant for λ ∈ [0, 1] , setting the above expression equal to 0 for
λ = 0 we get

1
m2

∑

j∈Sig∗#»
K

[
m∏

i=1

a
(i)
j

] 1
m




[
m∑

i=1

u
(i)
j

a
(i)
j

]2

− m

m∑

i=1

[
u

(i)
j

a
(i)
j

]2

 = 0

from which we obtain

−
∑

j∈Sig∗#»
K

[
m∏

i=1

a
(i)
j

] 1
m ∑

i,i′=1...m

[
u

(i)
j

a
(i)
j

− u
(i′)
j

a
(i′)
j

]2

= 0
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From the negative definite form of the above expression we deduce that for all
j ∈ Sig∗#»

K
and all i, i′ = 1 . . . m

u
(i)
j

a
(i)
j

=
u

(i′)
j

a
(i′)
j

whence for all j ∈ Sig∗#»
K

and all i, i′ = 1 . . . m

b
(i)
j

a
(i)
j

=
b
(i′)
j

a
(i′)
j

which suffices to establish 3.6(ii).

To show 3.6(iv) note that the function LogOpSig : ΓSig(
#»

K) → ∆Sig(
#»

K) is
by definition continuous and surjective. However by (ii) it is also clearly injective.
Finally to show 3.6(iii) we have already noted that Γ(

#»

K) and ΓSig(
#»

K) are compact
and convex. Since ∆(

#»

K) and ∆Sig(
#»

K) are the continuous images of these compact
sets under LogOp and LogOpSig respectively, it follows that ∆(

#»

K) and ∆Sig(
#»

K)
are also compact. From the convexity of ΓSig(

#»

K) the convexity of ∆Sig(
#»

K) follows
by (ii), while the convexity of ∆(

#»

K) follows immediately from that of ∆Sig(
#»

K) .
This completes the proof of 3.6.

2

Now since ∆(
#»

K) is a compact convex set by 3.6(iii) and since the entropy function

−
J∑

j=1

vj log vj

is strictly concave and bounded over this set, the set contains a unique point vME

at which the entropy function achieves its maximum value. It follows at once that
the following formal definition of the social inference process SEP defines, for every
#»

K satisfying the conditions of this section, a unique social belief function.

Definition 3.7

The Social Entropy Process, SEP, is the social inference process defined by

SEP(
#»

K ) = ME (∆(
#»

K) )

2

We remark that it follows immediately from the definition above that the social
inference process SEP marginalises to the inference process ME and to the pooling
operator LogOp .
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It is worth noting that Theorem 3.6(i) at once provides a simple sufficient condition
for ∆(

#»

K) to be a singleton and thus for the application of ME in the definition of
SEP(

#»

K ) to be redundant:

Theorem 3.8

If K1 . . .Km are such that for each j = 1 . . . J except possibly at most one there
exists some i with 1 ≤ i ≤ m such that the condition w(i) ∈ VKi forces w

(i)
j to take

a unique value, then ∆(K1 . . .Km) is a singleton. In particular this occurs if for
some i VKi

is a singleton.

2

Theorem 3.9

SEP satisfies the seven principles of the previous section: Equivalence, Anonymity,
Atomic Renaming, Consistency, Collegiality, Locality, and Proportionality.

Proof:

The fact that principles of Equivalence, Anonymity, and Atomic Renaming hold for
SEP follows easily from the basic symmetry properties of the definition of SEP.

To prove that SEP satifies Consistency, suppose that
#»

K = K1 . . .Km are such
that

m⋂

i=1

VKi 6= ∅

Then for any u ∈ ⋂m
i=1 VKi , if we set

v = w(1) = . . . = w(m) = u

Then
J∑

j=1

(
m∏

i=1

w
(i)
j )

1
m = 1

and since by 3.4 M #»
K ≤ 1 , it follows that M #»

K = 1 , and hence that
u ∈ ∆(

#»

K) . Conversely by 3.4, since M #»
K = 1 , then for any v ∈ ∆(

#»

K) if some
#»w ∈ Γ(

#»

K) generates v , then v = w(1) = . . . = w(m) , and so v ∈ ⋂m
i=1 VKi .

It follows that

SEP(K1 . . .Km) ∈
m⋂

i=1

VKi

as required.

To prove Collegiality suppose that K1 . . .Km are such that for some k with 1 <
k < m

SEP(K1 . . .Kk) ∈
m⋂

i=k+1

VKi

Let v̌ = SEP(K1 . . .Kk) and let v̂ = SEP(K1 . . .Km) .
Let < w̌(1) . . . w̌(k) >∈ Γ(K1 . . .Kk) be such that v̌ = LogOp(w̌(1) . . . w̌(k)).
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Similarly let < ŵ(1) . . . ŵ(m) >∈ Γ(K1 . . .Km) be such that v̂ = LogOp(ŵ(1) . . . ŵ(m))
Then by definition

k∑

i=1

J∑

j=1

vj log
vj

w
(i)
j

takes its minimum possible value for w(1) . . . w(k) subject to the constraints K1 . . .Kk

when < w(1) . . . w(k) > = < w̌(1) . . . w̌(k) > and v = LogOp(w̌(1) . . . w̌(k)) . We
denote this value by Min1 . Similarly

m∑

i=1

J∑

j=1

vj log
vj

w
(i)
j

takes its minimum possible value for w(1) . . . w(m) subject to the constraints K1 . . .Km

when < w(1) . . . w(m) >= < ŵ(1) . . . ŵ(m) >; and v = LogOp(ŵ(1) . . . ŵ(m)) .
We denote this value by Min2 .

We now define w̌(i) to be equal to v̌ for k+1 ≤ i ≤ m . Notice that by hypothesis
w̌(1) . . . w̌(m) now satisfy respectively the constraints K1 . . .Km . Hence we have
by the definitions above

Min2 ≤
m∑

i=1

J∑

j=1

v̌j log
v̌j

w̌
(i)
j

=
k∑

i=1

J∑

j=1

v̌j log
v̌j

w̌
(i)
j

= Min1. (8)

Similarly we also have

Min2 =
m∑

i=1

J∑

j=1

v̂j log
v̂j

ŵ
(i)
j

≥
k∑

i=1

J∑

j=1

v̂j log
v̂j

ŵ
(i)
j

≥ Min1. (9)

It follows that the six quantities appearing in (8) and (9) above are all equal, and
hence that

v̌ and v̂ are both in ∆(K1 . . .Kk) ∩ ∆(K1 . . .Km).

However by definition v̌ is the unique belief function with the highest entropy in
∆(K1 . . .Kk) , while v̂ is the unique belief function with the highest entropy in
∆(K1 . . .Km) . Hence v̌ = v̂ as required.

To prove Locality, consider a college with members A1 . . .Am initially having
respective constraint sets K1 . . .Km , where each Ki is a nice set of constraints
conditioned on some fixed non-contradictory sentence φ. Now for each i = 1 . . . m
let K∗

i be a nice set of constraints about ¬φ . We are given that
SEP(K1 ∪K∗

1, . . . , Km ∪K∗
m) (φ) 6= 0 and that SEP(K1 , . . . Km) (φ) 6= 0 . We

must show that for any sentence θ

SEP(K1 ∪ K∗
1, . . . ,Km ∪ K∗

m) (θ | φ) = SEP(K1 , . . . ,Km) (θ | φ) .

Clearly for this purpose it suffice to show that for any atom α such that α |= φ

SEP(K1 ∪ K∗
1, . . . ,Km ∪ K∗

m) (α | φ) = SEP(K1 , . . . ,Km) (α | φ) .

Notice that while we assume about each Ki that it determines a closed convex
set of probability functions conditioned on φ, such a Ki when interpreted as a set
of constraints about beliefs in the original atoms α1, α2, . . . αJ also determines a
closed convex region of DJ which as usual we denote by VKi . Hence VKi ∪K∗

i
is
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also a closed convex region of DJ . Furthermore the conditions imply that for each
i = 1 . . . m Ki ∪ K∗

i , is consistent, and hence the above applications of SEP are
legitimately made.

Without loss of generality we may assume as in the proof of 2.2 that the atoms are
so ordered that for some k with 1 ≤ k < J

φ ≡
k∨

j=1

αj and ¬φ ≡
J∨

j=k+1

αj

Let u = SEP(K1 , . . . Km) be generated by #»x ∈ Γ(K1, . . . ,Km ) , and let
v = SEP(K1 ∪ K∗

1, . . . ,Km ∪ K∗
m) be generated by

#»y ∈ Γ(K1 ∪ K∗
1, . . . , Km ∪ K∗

m) . For each i = 1 . . . m , let
∑k

j=1 x
(i)
j = a(i) , and

let
∑k

j=1 y
(i)
j = b(i) . Note that a(i) and b(i) are non-zero for all i since otherwise

φ would get social belief zero contradicting hypotheses.

Now consider the point #»z ∈ ⊗m
i=1 VKi

given for each i = 1 . . . m by

z
(i)
j =

{
y
(i)
j

a(i)

b(i) for j = 1, . . . , k

x
(i)
j for j = k + 1, . . . , J

By the definition of the point #»x we know that

J∑

j=1

[
m∏

i=1

z
(i)
j

] 1
m

≤
J∑

j=1

[
m∏

i=1

x
(i)
j

] 1
m

from which it follows that

k∑

j=1

[
m∏

i=1

y
(i)
j

a(i)

b(i)

] 1
m

≤
k∑

j=1

[
m∏

i=1

x
(i)
j

] 1
m

Dividing both sides by
[∏m

i=1 a(i)
] 1

m we obtain that

k∑

j=1

[
m∏

i=1

y
(i)
j

b(i)

] 1
m

≤
k∑

j=1

[
m∏

i=1

x
(i)
j

a(i)

] 1
m

.

However by repeating a similar argument, but this time with #»x and #»y interchanged
we obtain the reverse inequality, from which it follows that

k∑

j=1

[
m∏

i=1

y
(i)
j

b(i)

] 1
m

=
k∑

j=1

[
m∏

i=1

x
(i)
j

a(i)

] 1
m

= M1 say. (10)

Note that the above equality implies that the value M1 does not depend on the
K∗

i in any way.

Let
∑J

j=k+1

[∏m
i=1 y

(i)
j

] 1
m

= M2 and let
[∏m

i=1 b(i)
] 1

m = B .

Then from (3) we know that
∑k

j=1

[∏m
i=1 y

(i)
j

] 1
m

= M1B .
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Let us denote by C the quantity

J∑

j=1

[
m∏

i=1

y
(i)
j

] 1
m

= M1B + M2 (11)

and we note that by definition C is the maximal value which can be taken by
∑J

j=1

[∏m
i=1 t

(i)
j

] 1
m

for any #»
t ∈ ⊗m

i=1 VKi∪K∗
i

. We now consider those #»
t of

this form for which t
(i)
j = y

(i)
j for all j = k + 1, . . . , J and all i = 1, . . . , m . Then,

since for each j = 1 . . . k vj = C−1
[∏m

i=1 y
(i)
j

] 1
m

the definition of #»y ensures
that the column vectors y1 . . . yk are of the form t1 . . . tk where

−
k∑

j=1

C−1

[
m∏

i=1

t
(i)
j

] 1
m

log


C−1

[
m∏

i=1

t
(i)
j

] 1
m


 (12)

is maximised subject to the conditions that for each i the probability distribution

<
t
(i)
1

b(i) . . .
t
(i)
k

b(i) > satisfies the constraint set Ki , that

k∑

j=1

[
m∏

i=1

t
(i)
j

] 1
m

= M1B (13)

and that for each i

k∑

j=1

t
(i)
j = b(i) . (14)

Using some elementary algebra and (13) above we can rewrite the quantity in (12)
which is to be maximised as

− M1B

C
log

B

C
− B

C

k∑

j=1

[
m∏

i=1

t
(i)
j

b(i)

] 1
m

log

[
m∏

i=1

t
(i)
j

b(i)

] 1
m

(15)

Now since B , C , and M1 , are positive constants for the #»
t under consideration, it

follows that maximising (15), or equivalently (12), under the given constraints, is
equivalent to maximising

−
k∑

j=1

[
m∏

i=1

t
(i)
j

b(i)

] 1
m

log

[
m∏

i=1

t
(i)
j

b(i)

] 1
m

(16)

Hence, writing w
(i)
j for

t
(i)
j

b(i) , if follows that this is in turn equivalent to maximising

−
k∑

j=1

[
m∏

i=1

w
(i)
j

] 1
m

log

[
m∏

i=1

w
(i)
j

] 1
m

(17)

subject to the constraints that each k-dimensional row vector w(i) = < w
(i)
1 . . . w

(i)
k >

sums to 1 and satisfies Ki when interpreted as a probability function conditioned
on φ , and that

k∑

j=1

[
m∏

i=1

w
(i)
j

] 1
m

= M1 (18)
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Now by the remark following (10), the value M1 must be the largest possible

which can be attained by
∑k

j=1

[∏m
i=1 w

(i)
j

] 1
m

for the w(i) probability functions
satisfying the Ki . Hence since the Ki are nice constraint sets, it follows by the
fact that SEP is well-defined that any solution for #»w to the above maximisation
problem generates the unique SEP(K1 , . . . ,Km) solution given by

SEP(K1 , . . . ,Km) (αj | φ) =

[∏m
i=1 w

(i)
j

] 1
m

∑k
r=1

[∏m
i=1 w

(i)
r

] 1
m

for j = 1 . . . k .
However by the definition of the above w

(i)
j and the uniqueness of the SEP values,

it follows that for such a solution #»w , for each j = 1 . . . k

[
m∏

i=1

w
(i)
j

] 1
m

=

[
m∏

i=1

y
(i)
j

b(i)

] 1
m

(19)

whence for each j = 1 . . . k

SEP(K1 , . . . ,Km) (αj | φ) =

[∏m
i=1

y
(i)
j

b(i)

] 1
m

∑k
r=1

[∏m
i=1

y
(i)
r

b(i)

] 1
m

=
C−1

[∏m
i=1 y

(i)
j

] 1
m

C−1
∑k

r=1

[∏m
i=1 y

(i)
r

] 1
m

= SEP(K1 ∪ K∗
1, . . . ,Km ∪ K∗

m) (αj | φ)

as required. This concludes the proof of Locality.

It remains for us to prove that SEP satisfies Proportionality.

Let K1 , . . . ,Km be constraint sets and for each r = 1 . . . n let Kir denote a copy
of the constraint set Ki , so that VKir = VKi . As a shorthand we denote the
sequence Ki1 . . .Kin by nKi . Clearly it suffices for us to prove that

∆(nK1, nK2, . . . , nKm) = ∆(K1, K2, . . . ,Km) (20)

Let v ∈ ∆(nK1, nK2, . . . , nKm) be generated by some #»w ∈ Γ(nK1, nK2, . . . , nKm) .
Then letting

n∑
r=1

m∑

i=1

J∑

j=1

vj log
vj

w
(ir)
j

= D (21)

by definition D is minimal subject only to the constraints that w(ir) ∈ VKi for all
r = 1 . . . n and i = 1 . . . m , (but no constraints on v ). Then for each r = 1 . . . n

m∑

i=1

J∑

j=1

vj log
vj

w
(ir)
j

=
D

n
(22)

and
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D
n is the minimum value which can be taken by

∑m
i=1

∑J
j=1 vj log vj

z
(i)
j

for z(i) ∈ VKi
(23)

(22) holds because otherwise we would have that for some r0 with 1 ≤ r0 ≤ n

m∑

i=1

J∑

j=1

vj log
vj

w
(ir0)
j

<
D

n

and if we then define #»y by
y
(ir)
j = w

(ir0)
j

for all i, j and r , we would have that
∑n

r=1

∑m
i=1

∑J
j=1 vj log vj

y
(ir)
j

< D contra-

dicting the definition of D in (21). The same argument shows also that (23) holds.
From (22) and (23) it follows that v ∈ ∆(K1, K2, . . . ,Km) .

Conversely if some v ∈ ∆(K1, K2, . . . ,Km) is generated by a #»z ∈ Γ(K1, K2, . . . ,Km)
then it is easy to see that

m∑

i=1

J∑

j=1

vj log
vj

z
(i)
j

=
D

n
(24)

where D is the minimal value defined at (14) since the value of
∑m

i=1

∑J
j=1 vj log vj

z
(i)
j

cannot be smaller than D
n by the same argument used to show (22) and (23). How-

ever if we now define #»w by w
(ir)
j = z

(i)
j then by (24) the equation (21) holds and

so v ∈ ∆(nK1, nK2, . . . , nKm) .
Thus ∆(nK1, nK2, . . . , nKm) = ∆(K1, K2, . . . ,Km) as required.

This concludes the proof of Theorem 3.9.
2

We remark that Sam Savage [33] has shown that a certain form of converse of
Collegiality holds for SEP . Namely, if K1 . . .Km are such that for each
j = 1 . . . J SEP(K1 . . .Km)(αj) 6= 0 , then if SEP(K1 . . .Km−1) 6∈ VKm then
SEP(K1 . . .Km−1) = SEP(K1 . . .Km) .

2

We end this section with some brief remarks concerning possible generalisations
to the context of a social inference process, and in particular to SEP, of the re-
maining key principles which were identified by Paris and Vencovská ([28],[27]) as
characterising the ME inference process.

One such key principle satisfied by ME, is that of Open-Mindedness. An in-
ference process I satisfies Open-Mindedness if for every constraint set K, for
all j = 1 . . . J I(K)(αj) 6= 0 unless wj = 0 for all w ∈ VK. The
most obvious way of extending this principle to the case of a social inference
process F would seem to be to propose that for all j = 1 . . . J and for all
K1, K2, . . . Km F(K1, K2, . . . Km)(αj) 6= 0 unless for some i w

(i)
j = 0 for

all w(i) ∈ VK(i) . It is easy to see however that such a principle cannot hold for any
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F which satisfies the Consistency Principle. For if we take the example where there
are three atoms α1, α2, α3, and K1 = {w(α1) = 1

3} , while K2 = {w(α2) = 2
3} ,

then by the consistency principle the only possible social belief function is given by
v = < 1

3 , 2
3 , 0 >, despite the fact that neither K1 nor K2 on their own force belief

in α3 to be zero. Furthermore, at least in the case of the inference process SEP, it
is easy to show that similar counterexamples K

′
1 and K

′
2 to such a principle can

be found where the union of the constraint sets K
′
1 and K

′
2 is not consistent.

Another important property of the inference process ME, identified in [28] is that
of continuity with respect to the Blaschke topology. At present we do not know
whether an analogous formulation of this continuity principle holds for SEP, al-
though it seems likely that this is the case.

The Obstinacy Principle for an inference process I states that if K and K
′

are constraint sets such that I(K) ∈ VK′ then I(K ∪K
′
) = I(K) . While this

principle is satisfied by ME, and indeed by nearly all standard inference processes,
an appropriate generalisation of the principle to the context of a social inference
process is not immediately evident. However Savage in [33] formulates an interest-
ing geometric version of obstinacy for a social inference process which he proves
holds for the case of SEP. However, unlike the situation for the classical notion of
obstinacy with respect to ME, it is not clear whether Savage’s principle could be
of practical value in simplifying calculations of SEP-values.

The three remaining principles used to characterise ME, in the Paris-Vencovská
framework as in [28] are all most naturally formulated in the context where the
atoms α1, α2, . . . αJ are the atoms of a Boolean algebra generated by a set of propo-
sitional variables p1 . . . pn , so that J = 2n . These principles are those of Language
Invariance , Irrelevant Information , and Independence, and appropriate re-
formulations of them for social inference processes are studied in a forthcoming
paper by Martin Adamčik and the author [1]. It turns out that whereas language
invariance generalises in a straightforward manner and holds for SEP, analogues
of the other two principles either fail or need careful reformulation if they are to
hold for SEP.
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4 An Alternative Characterisation of SEP

A remarkable characteristic of SEP is that the use of maximum entropy at the
second second stage of the defining process, which is included in order to force the
choice of a social belief function to be unique in cases when this would not otherwise
hold, can actually be eliminated by insisting that the social inference process sat-
isfy a variant of the axiom of proportionality. Such an argument counters a possible
objection that the invocation of maximum entropy at the second stage of the defi-
nition is somewhat artificial. To be precise it is possible to substitute the following
procedure to define SEP. We will explain and justify the procedure heuristically
before formally stating and proving the corresponding theorem.

In order to calculate a unique social belief function v for a college M with vector of
constraint sets

#»

K = K1 . . .Km , chairman A0 recognizes that he may have to use
a casting constraint set of his own in order to eliminate ambiguities caused by the
failure of the agreed process of minimising the sum of cross-entropies to provide a
unique social belief function. However, as a good chairman, he wishes to intervene
in a manner which (a) demonstrates that he is completely unprejudiced, and (b)
reduces to an absolute minimum the effect which his own opinion may have on the
outcome. In order to fulfil (a) it seems clear to him that he should choose his casting
constraint set K0 to be a constraint set I with

VI = {< 1
J

,
1
J

. . .
1
J

>}

His only other possible choice would seem to be to take K0 to be the empty set of
constraints, but by Collegiality this would clearly not resolve any ambiguity. On
the other hand chairman A0 worries that if he simply adds in his constraint set I
as a single extra member of the opinion forming body, he may be exerting more
influence than is necessary or appropriate, if other opinions are finely balanced. He
therefore resolves to dilute his influence in the following manner. Inspired by the
Proportionality Principle, he imagines that, for some large finite number n, each
member of the college except himself is replaced by exactly n clones, each clone
having exactly the same set of constraints as the member replaced; and to this
new college of nm members A0 adds himself as a single additional member with
constraint set I as above.

The vector of sets of constraints of the members of the new college of nm + 1
members now looks as follows:

K1, . . . ,K1, K2, . . . ,K2, . . . . . . ,Km, . . . ,Km, I

Chairman A0 notices that since VI is a singleton, by 3.8 the result of minimis-
ing the sum of cross-entropies subject to these constraint sets will, for any given
n always yield a unique social belief function. He reasons that if as n → ∞ the
resulting sequence of social belief functions converges to a belief function v then
this should be an optimal choice as social belief function since his own influence
on the process will surely have become as diluted as possible, thus satisfying his
condition (b) above. We will prove in Theorem 4.2 below that not only does this
sequence of belief functions converge, but that the resulting limiting belief function
v will in fact always be SEP(

#»

K ). This is true whether or not ∆(
#»

K) is a singleton.
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Consequently Chairman A0 can reason that his use of ME in the definition of SEP
is fully justified by the above heuristic.

In order to state formally and prove this result we introduce the following definition:

Definition 4.1

The Weak Social Entropy Process, WSEP, is defined by

WSEP(
#»

K ) =

{
v if ∆(

#»

K) is the singleton {v},
undefined otherwise.

2

WSEP is of course not a true social inference process since it is only partially
defined. Obviously however WSEP(

#»

K ) = SEP(
#»

K ) whenever the former is
defined.

We will denote the constraint sets of the college of nm + 1 members

K1, . . . ,K1, K2, . . . ,K2, . . . . . . ,Km, . . . ,Km, I

in abbreviated form by
n

#»

K , I .

Theorem 4.2

For any
#»

K and any n ∈ N+ WSEP(n
#»

K , I) = SEP(n
#»

K , I) , and furthermore

lim
n→∞

WSEP(n
#»

K , I) = SEP(
#»

K )

Proof:

Since VI is a singleton, by 3.8 ∆(n
#»

K, I) is always a singleton, and so WSEP(n
#»

K , I)
is a well-defined point for any n ∈ N+. It does not follow from this that Γ(n

#»

K, I)
is a singleton, but we will show below that “significant” coordinates are uniquely
determined.

For now let us fix n. Then if WSEP(n
#»

K , I) = v say, and noting that
Sign

#»
K,I = Sig #»

K , then for every j ∈ J

vj = 0 if and only if j /∈ Sig #»
K

This is true because if #»w is a point in Γ(n
#»

K, I) which generates v, then if j ∈ Sig #»
K

then since w
(mn+1)
j = 1

J it follows from 3.6(i) that every entry in the column vector
wj is non-zero, so vj is non-zero.
Furthermore for any such #»w in Γ(n

#»

K, I) it is clear that the first n rows, i.e. with
i = 1 . . . n , which correspond to the members with constraint set K1, must all
be identical for those entries w

(i)
j with j ∈ Sig #»

K . For if two of these rows were
not so identical then, if they differed in the j’th entry for some j ∈ Sig #»

K , we could
interchange them to obtain a different point

#  »

w′ in Γ(n
#»

K, I) : however the j’th
column w′

j could not then be a multiple of wj , contradicting Theorem 3.6.
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Moreover exactly the same argument works for the second and subsequent blocks
of n rows, up to the m’th block of n rows.

From the above observations it follows that finding an #»w in Γ(n
#»

K, I) is essentially
the same problem as finding an #»x ∈ ⊗m

i=1 VKi
for which

J∑

j=1

[
1
J

m∏

i=1

(x(i)
j )n

] 1
nm+1

is maximal,

or equivalently, for which the function defined by

Hε(n)( #»x ) =
J∑

j=1




[
m∏

i=1

x
(i)
j

] 1
m




(1−ε(n))

is maximal,

where ε(n) = 1
mn+1 → 0 as n → ∞ .

Note that for any ε(n) as above the values of
[∏m

i=1 x
(i)
j

] 1
m

for which Hε(n)( #»x )
is maximal are uniquely determined for each j = 1 . . . J and are non-zero if and
only if j ∈ Sig #»

K .

In order to make what follows more readable, we shall temporarily write ε instead
of ε(n) and suppress the dependence of ε on n.

For any such ε as above we denote the vector of unique values of
[∏m

i=1 x
(i)
j

] 1
m

as
defined above by

yε = < y1, ε . . . yJ, ε > (25)

and we denote the maximal value of Hε( #»x ) by mε , so that

mε =
J∑

j=1

(yj, ε)1−ε (26)

and let

Mε =
J∑

j=1

yj, ε (27)

We need to examine the behaviour of yε as ε → 0 , i.e. as n →∞ .

Define M0 to be M #»
K , i.e the maximum possible value of

∑J
j=1

[∏m
i=1 x

(i)
j

] 1
m

. By
our initial assumptions M0 > 0 .

A straight forward consequence of the above definitions is the following:

Lemma 4.3

Mε ≤ M0 ≤ mε for all ε ∈ (0, 1)

2

Lemma 4.4
Mε → M0 as ε → 0+ .

33



Proof:

We show first that the function y1−ε converges uniformly to y as ε → 0+ in
the sense that there exists some positive real valued function T (ε) such that for
all y ∈ [0, 1] and all ε with 0 < ε < 1

2

y1−ε < y + T (ε) and limε→0+ T (ε) = 0 .

Now
y1−ε = y e−ε log y

whence , expanding the exponential function as a power series, multiplying by y,
and taking out a factor of ε , we get

y1−ε − y = ε

∞∑

k=1

εk−1 y (−log y)k

k!

The absolute value of y (log y)k is at a maximum when y = e−k and hence the
absolute value of the k’th term of the above series is bounded by εk

k!

[
k
e

]k
. Since

this bound decreases for decreasing ε , we have that for all ε with 0 < ε < 1
2 and

y ∈ [0, 1]

y1−ε − y < ε

∞∑

k=1

[
1
2

]k−1 [
k

e

]k 1
k!

and since the sum converges by d’Alembert’s ratio test, the right hand side provides
the required function T (ε) .

To complete the proof of 4.4 we note that, using 4.3 and the above,

Mε ≤ M0 ≤ mε =
∞∑

j=1

(yj, ε)1−ε ≤
∞∑

j=1

yj, ε + T (ε) = Mε + T (ε) .

Hence , letting ε tend to zero, we obtain the required result.
2

We now note that for fixed ε an equivalent definition of yε is as that vector of
values which maximises the function

Gε(y) =
1
ε

log

[∑
j∈Sig #»

K
(yj)(1−ε)

Mε

]
(28)

subject to the conditions that

yj =

[
m∏

i=1

(x(i)
j )

] 1
m

for j ∈ Sig #»
K , and #»x ∈

m⊗

i=1

VKi . (29)

For fixed ε we will now consider the behaviour of Gε(y) for general y satisfying
conditions (29) above. Actually we are only interested in those y which are either
of the form y ε(n) for some n or which are such that

∑J
j=1 yj = M0 , and

from now on we shall assume that y is of this kind. We note that for j ∈ Sig #»
K

0 < yj ≤ 1 , and that for such yj for any k ∈ N+ |yj(log yj)k| is uniformly bounded
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above by (k
e )k, (as in the proof of 4.4).

By 4.4 it follows that

J ≥
J∑

j=1

yj > c > 0 (30)

for some fixed bound c for all such y .

Now

(yj)1−ε = (yj) e−ε log yj (31)

= yj − ε yj log yj +
∞∑

k=2

yj (−ε log yj)k (32)

whence

∑

j∈Sig #»
K

(yj)1−ε =
∑

j∈Sig #»
K

yj

[
1− ε

∑
j∈Sig #»

K
yj logyj∑

j∈Sig #»
K

yj
+ O(ε2)

]
(33)

where the term O(ε2) is such that its modulus is, by the argument in the proof of
4.4, uniformly bounded by ε2D for some positive constant D.
Rewriting the equation (4) we now have

Gε(y) =
1
ε

[
log

[
1− ε

∑
j∈Sig #»

K
yj logyj∑

j∈Sig #»
K

yj
+ O(ε2)

]
+ log

∑
j∈Sig #»

K
yj

Mε

]
(34)

Expanding the logarithm as a power series and using (6) we obtain

Gε(y) = −
∑

j∈Sig #»
K

yj logyj∑
j∈Sig #»

K
yj

+ εR(ε, y) +
1
ε

log

∑
j∈Sig #»

K
yj

Mε
(35)

where | R(ε, y) | has a uniform bound independent of y and of ε.

Now notice the following facts about equation (35):

1. For given ε = ε(n) corresponding to a specific value of n, the vector yε

satisfies

Gε(yε ) = −
∑

j∈Sig #»
K

yj, ε log yj, ε

Mε
+ εR(ε, yε ) (36)

since the final term vanishes.

2. For any y for which
∑

j∈Sig #»
K

yj = M0 the final term of (35) is positive
since Mε ≤ M0 by 4.3.

Let us denote by z that unique y for which
∑

j∈Sig #»
K

yj = M0 and
∑

j∈Sig #»
K

−yj log yj is maximal.

Then

SEP(
#»

K ) = <
z1

M0
. . .

zJ

M0
> (37)
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since

∑

j∈Sig #»
K

−yj log yj is maximal if and only if
∑

j∈Sig #»
K

− yj

M0
log

yj

M0
is maximal.

To complete the proof of the theorem we need to show that

lim
n→∞

<
y1, ε(n)

Mε(n)
. . .

yJ, ε(n)

Mε(n)
> = <

z1

M0
. . .

zJ

M0
> (38)

Since by 4.4 Mε → M0 as ε → 0 , it suffices to show that yε → z as ε → 0 .

Now since all the y are in [0, 1]J , by compactness the sequence of yε(n) for n ∈ N
has a convergent subsequence, say yε(ρ(n)) , where ε(ρ(n)) → 0 as n →∞ .
Let

lim
n→∞

yε(ρ(n)) = y∗ . (39)

Then from (36) above and the fact that Mε → M0 , it follows that

lim
n→∞

Gε(ρ(n))(yε(ρ(n)) ) = −
∑

j∈Sig #»
K

y∗j log y∗j
M0

(40)

and
∑

j∈Sig #»
K

y∗j = M0 (41)

We now show that y∗ = z .

For suppose for contradiction that this were not so. Let

1
M0


−

∑

j∈Sig #»
K

zj log zj +
∑

j∈Sig #»
K

y∗j log y∗j


 = d (42)

Then d > 0 since y∗ and z both have sum M0 and z is the unique maximum
entropy point. Now by (35)

Gε(ρ(n))(z) = d −
∑

j∈Sig #»
K

y∗j logy∗j
M0

+ ε(ρ(n))R(ε(ρ(n)), z) +
1

ε(ρ(n))
log

M0

Mε(ρ(n))

≥ d −
∑

j∈Sig #»
K

y∗j logy∗j
M0

+ ε(ρ(n))R(ε(ρ(n)), z) (43)

However for large enough the right hand-side is strictly greater than Gε(ρ(n))(yε(ρ(n)))
by (36),(40), and the boundedness of R.
This is impossible since then Gε(ρ(n))(z) > Gε(ρ(n))(yε(ρ(n))) which contradicts the
definition of yε(ρ(n)). Thus we have shown that y∗ = z .
It remains to show that the whole sequence of the yε(n) converges to z as n →∞.
If this were not the case then there would be some δ > 0 such that there exists an
infinite subsequence yε(τ(n)) of the yε(n) such that the yε(τ(n)) are bounded away
from z by Euclidean distance | yε(τ(n)) − z | > δ for all n ∈ N. However now by
compactness again this subsequence yε(τ(n)) itself has an infinite convergent sub-
sequence which converges to a point say y∗∗ . By the same argument as for y∗

we must have that y∗∗ = z ; on the other hand by its definition y∗∗ is bounded
away from z by distance at least δ, which gives a contradiction. Thus we have
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established (38) and the proof of Theorem 4.2 is complete.

2

It is perhaps worth remarking that in the very special case when there is only a
single member A1 of the college apart from the Chairman A0, the explanation of
Theorem 4.2 given at the beginning of this section provides a new interpretation of
an old technical result. For in this special case, for any n ∈ N
WSEP(nK1, I) returns that probability function v which satisfies the constraints
K1 and which maximises the function

J∑

j=1

v
( n

n+1 )

j

In other words for a given n ∈ N this gives the same result as applying the Renyi
inference process RENr with parameter r = ( n

n+1 ). Now it is an old result (see
e.g. [23] or [14]) that as r → 1 the result of applying the Renyi process RENr to
a given set of constraints K1 tends to the maximum entropy solution for K1. So
the heuristic explanation underlying Theorem 4.2 may be regarded as a generalised
interpretation of this classical result from a new perspective.
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