
MATH43032/63032 Exam Solutions, 20131

A1.

θ |∼~s φ ⇐⇒

{

∀i si ∩ Sθ = ∅ or

∃i si ∩ Sθ 6= ∅ and for the least such i, si ∩ Sθ ⊆ Sφ.

The Representation Theorem for Rational Consequence Relations: Every rational consequence
relation on SL is of the form |∼~s for some ~s = s1, s2, . . . , sm ⊆ AtL, and conversely every |∼~s is
a rational consequence relation.

(i) Not true, (ii) True (iii) True.

A2. (a) Assume θ ∧ φ |∼ ¬ψ and θ 6|∼ ¬ψ. From θ ∧ φ |∼ ¬ψ by CON, θ |∼ φ → ¬ψ and
with θ 6|∼ ¬ψ and RMO, θ ∧ ψ |∼ φ → ¬ψ. Since θ ∧ ψ |= ψ, θ ∧ ψ |∼ ψ by SCL. Hence, with
θ ∧ ψ |∼ φ → ¬ψ. and AND, θ ∧ ψ |∼ ψ ∧ (φ → ¬ψ), and, since ψ ∧ (φ → ¬ψ) |= ¬φ, with
RWE, θ ∧ ψ |∼ ¬φ, as required.

(b) As usual let α1 = p∧q, α2 = p∧¬q, α3 = ¬p∧q, α4 = ¬p∧¬q. Running the Z-algorithm
we get:

A0 = {α1, α2, α3, α4 },
K0 = K = { p ∨ q |∼ ¬p, ¬q |∼ p }.
u1 = A0 ∩ S¬(p∨q)∨¬p ∩ S¬¬q∨p = A0 ∩ S¬p ∩ Sq∨p

= {α3, α4} ∩ {α1, α2, α3} = {α3}.

A1 = A0 − u1 = {α1, α2, α4},
K1 = {¬q |∼ p, }, since Sp∨q ∩ u1 = {α1, α2, α3 } ∩ {α3 } 6= ∅,
S¬q ∩ u1 = {α2, α4 } ∩ {α3 } = ∅,
u2 = A1 ∩ S¬¬q∨p = {α1, α2, α4 } ∩ {α1, α2, α3 } = {α1, α2 }.

A2 = A1 − u2 = {α4},
K2 = ∅ since u2 ∩ S¬q = {α2 } 6= ∅.
u3 = A2 = {α4 }

Since all the atoms have now been used up we must have u4 = ∅ so the rational closure of K
is |∼~u where

~u = u1, u2, u3 = {α3 }, {α1, α2 }, {α4 }.

A3. For Γ ⊆ SML, θ ∈ SML, Γ |=K θ iff for all frames 〈W,E, V 〉 and i ∈ W , if 〈W,E, V 〉, i |=
φ for all φ ∈ Γ then 〈W,E, V 〉, i |= θ.

(i) Let 〈W,E, V 〉 be a frame, i ∈ W and suppose that (in 〈W,E, V 〉) i |= ¬23θ. Then there
must be some j ∈ W such that 〈i, j〉 ∈ E and j 2 3θ. If i |= 2θ then j |= θ so i |= 3θ and
i |= ¬2θ ∨ 3θ. On the other hand if i 2 2θ then i |= ¬2θ and again i |= ¬2θ ∨ 3θ. Either
way then i |= ¬2θ ∨3θ and ¬23θ �K ¬2θ ∨3θ follows.

(ii) Let 〈W,E, V 〉 be the frame with W = {0, 1, 2}, E = {〈0, 1〉, 〈0, 2〉}, V0(p) = V0(q) = 1,
V1(p) = 0, V1(q) = 1, V2(p) = 1, V2(q) = 0. Then 0 2 2q, since 〈0, 2〉 ∈ E and 2 2 q, so

1 |= ¬2q. (1)

1As usual these are more detailed than I would necessarily require from the students since they are also

intended to serve an instructional purpose for the students.
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Also 0 |= 2(p ∨ q), since 1 |= q, 2 |= p so at both vertices accessible from 0, p ∨ q holds, and
0 2 2p since 〈0, 1〉 ∈ E and 1 2 p. So

0 2 2(p ∨ q) → 2p.

Putting this together with (1) gives that ¬2q 2K 2(p ∨ q) → 2p.

A4. A proof in D is a sequence of sequents Γ1|θ1,Γ2|θ2, . . . ,Γm|θm, where the Γi are finite
subsets of SML and the θi ∈ SML, such that for each i = 1, 2, . . . , m, either Γi|θi is an
instance of an axiom of D or ∃j1, j2, . . . , js < i such that

Γj1|θj1 ,Γj2|θj2, . . . ,Γjs|θjs
Γi|θi

is an instance of a rule of proof of D.

Γ ⊢D θ if ∃ a proof in D, Γ1|θ1,Γ2|θ2, . . . ,Γm|θm, such that Γm ⊆ Γ and θm = θ.

Proof in D of ⊢D 22θ → 23θ:

1 2θ | 3θ D axiom
2 | (2θ → 3θ) IMR, 1
3 | 2(2θ → 3θ) NEC, 2
4 2(2θ → 3θ) | 22θ → 23θ K axiom
5 | 2(2θ → 3θ) → (22θ → 23θ) IMR 4
6 | 22θ → 23θ MP 3, 5.

A5. Let ∧ (= F∧) satisfy (C1-C4) and let A = { x ∈ [0, 1] | x ∧ x = x }. Then for x ∈ A and
0 ≤ z ≤ x ≤ y ≤ 1,

z ∧ y = y ∧ z = z = min{y, z},

and if a < b , a, b ∈ A and (a, b) ∩ A = ∅ then on [a, b] either 〈[a, b],∧, <〉 ∼= 〈[0, 1],×, <〉 or
〈[a, b],∧, <〉 ∼= 〈[0, 1],max{0, x+ y − 1}, <〉.

Let G : [0, 1]2 → [0, 1] be defined by

G(x, y) = min{x, y, 2xy}.

and assume that satisfies C1-C4. Notice that for x ∈ [0, 1], 2x2 < x iff 0 < x < 1
2
, so

G(x, x) = min{x, x, 2x2} = x ⇐⇒ x = 0 or 1
2
≤ x ≤ 1

and

A = {x ∈ [0, 1] |G(x, x) = x} = {0} ∪ [1
2
, 1].

By the above result then G(x, y) = min{x, y} whenever either x ∈ [1
2
, 1] or y ∈ [1

2
, 1]. On

[0, 1
2
], 〈[0, 1

2
], G,<〉 is isomorphic to either 〈[0, 1],×, <〉 or to 〈[0, 1],max{0, x+ y − 1}, <〉 and

since G(x, x) = 2x2 > 0 for x ∈ (0, 1
2
] it must be the former of these since the corresponding

property fails for 〈[0, 1],max{0, x+ y − 1}, <〉.
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A6. For Γ ⊆ SL, θ ∈ SL, Γ |= L θ if for all [0, 1]-valuations w, if w(φ) = 1 for all φ ∈ Γ then
w(θ) = 1.

The Completeness Theorem for  L states that for Γ ⊆ SL, Γ finite, and θ ∈ SL, Γ |= L θ iff

Γ ⊢ L θ.

(i) Let w(p) = 1
2
, w(q) = 1

3
, so w(¬p) = 1 − 1

2
= 1

2
. Recalling that w(θ → φ) = 1 ⇐⇒

w(θ) ≤ w(φ) we have that w(p→ q) < 1, w(¬p→ q) < 1 so

w((p→ q)∨(¬p→ q)) = max{w(p→ q), (¬p→ q)} < 1

Hence 2 L (p→ q)∨(¬p→ q) and by the Completeness Theorem 0 L (p→ q)∨(¬p→ q) .

(ii) Let w be a [0, 1]-valuation. Suppose that

w((p→ q) ∨ (¬p→ q)) = min{w(p→ q) + w(¬p→ q), 1} < 1.

Then
w((p→ q) ∨ (¬p→ q)) = w(p→ q) + w(¬p→ q) < 1 (2)

and both w(p→ q), w(¬p→ q) < 1, so

w(p→ q) = 1 − w(p) + w(q),

w(¬p→ q) = 1 − w(¬p) + w(q) = 1 − (1 − w(p)) + w(q) = w(p) + w(q).

But then

w(p→ q) + w(¬p→ q) = (1 − w(p) + w(q)) + (w(p) + w(q)) = 1 + 2w(q) ≥ 1,

contradicting (2). Hence we must have w((p→ q) ∨ (¬p→ q)) = 1 and since w was arbitrary,

|= L (p→ q) ∨ (¬p→ q).

By the Completeness Theorem then

⊢ L (p→ q) ∨ (¬p→ q).

B7. Let ~s = s1, s2, . . . , sm and assume that θ |∼~s φ and φ ∧ ¬ψ |∼~s ψ. By the Representation
Theorem it is enough to show that θ |∼~s ψ. If si ∩ Sθ = ∅ for all i = 1, . . . , m then θ |∼~s ψ. So
assume that for some i, si ∩ Sθ 6= ∅, say i is the least such. Then from θ |∼~s φ, si ∩ Sθ ⊆ Sφ.

Suppose that θ 6|∼~s ψ. Then si ∩ Sθ  Sψ so for some α ∈ si ∩ Sθ, α /∈ Sψ. ∴ α ∈ S¬ψ.
Also α ∈ Sφ since si ∩ Sθ ⊆ Sφ so α ∈ Sφ ∩ S¬ψ = Sφ∧¬ψ. Hence si ∩ Sφ∧¬ψ 6= ∅. Let j be
minimal such that sj ∩ Sφ∧¬ψ 6= ∅. Then from φ ∧ ¬ψ |∼~s ψ, sj ∩ Sφ∧¬ψ ⊆ Sψ. But clearly
sj ∩ Sφ∧¬ψ ⊆ S¬ψ so we have

∅ 6= sj ∩ Sφ∧¬ψ ⊆ Sψ ∩ S¬ψ = Sψ ∩ (AtL − Sψ) = ∅,

contradiction. We conclude that θ 6|∼~s ψ is false, i.e. θ |∼~s ψ, as required.

For the second part let L = {p, q, r}, θ = p, φ = q, ψ = r and ~s = {¬p ∧ q ∧ r}, {p ∧ q ∧ ¬r}.
Then θ ∧ ¬φ |∼~s φ and φ |∼~s ψ but θ 6|∼~s ψ so the rule fails for this choice of rcr and θ, φ, ψ.

3



B8. The proof is by induction on n ∈ N such that θ ∈ SMLn. If n = 0 then θ = p for some
p ∈ L and

〈W,E, V 〉, w |= θ ⇐⇒ Vw(p) = 1

⇐⇒ V ′

w(p) = 1, since Vw = V ′

w,

⇐⇒ 〈W ′, E ′, V ′〉, w |= θ.

Now suppose that θ ∈ SMLn+1 − SMLn and the result holds for φ ∈ SMLn. If θ = (φ ∧ ψ)
with φ, ψ ∈ SMLn then

〈W,E, V 〉, w |= θ ⇐⇒ 〈W,E, V 〉, w |= φ and 〈W,E, V 〉, w |= ψ

⇐⇒ 〈W ′, E ′, V ′〉, w |= φ and 〈W ′, E ′, V ′〉, w |= ψ

by Inductive Hypothesis,

⇐⇒ 〈W ′, E ′, V ′〉, w |= θ.

The cases for θ = ¬φ, (φ ∨ ψ), (φ→ ψ) are exactly similar.

Finally if θ = 2φ with φ ∈ SMLn then

〈W,E, V 〉, w |= θ ⇐⇒ ∀y ∈ W with 〈w, y〉 ∈ E, 〈W,E, V 〉, y |= φ

⇐⇒ ∀y ∈ W with 〈w, y〉 ∈ E, 〈W ′, E ′, V ′〉, y |= φ,

by Inductive Hypothesis,

⇐⇒ ∀y ∈ W ′ with 〈w, y〉 ∈ E ′, 〈W ′, E ′, V ′〉, y |= φ,

since for w ∈ W, {y ∈ W | 〈w, y〉 ∈ E} = {y ∈ W ′ | 〈w, y〉 ∈ E ′},

⇐⇒ 〈W ′, E ′, V ′〉, w |= θ,

which concludes the proof that for w ∈ W , θ ∈ SML,

〈W,E, V 〉, w |= θ ⇐⇒ 〈W ′, E ′, V ′〉, w |= θ. (3)

To show the last part suppose that �D 3θ but not �D θ. Then there is a D-frame 〈W,E, V 〉
(i.e. serial frame) and w ∈ W such that

〈W,E, V 〉, w 2 θ.

Let v /∈ W and 〈W ′, E ′, V ′〉 be as above (with V ′

v chosen arbitrarily). Then 〈W ′, E ′, V ′〉 is
serial so since ⊢D 3θ, by the Completeness Theorem for D,

〈W ′, E ′, V ′〉, v |= 3θ.

But since w is the only vertex in W ′ accessible from v it must be the case that

〈W ′, E ′, V ′〉, w |= θ,

and hence by (3),
〈W,E, V 〉, w |= θ,

– contradiction. Hence we must have ⊢D θ, as required.

B9. (i) If ψ is an axiom of |= L then ∅ |ψ is a proof, so ⊢ L ψ.
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(ii) Suppose that ⊢ L ψ and ⊢ L (ψ → η), say ∆1 | φ1,∆2 | φ2, . . . ,∆m | φm and
Γ1 | θ1,Γ2 | θ2, . . . ,Γr | θr are, respectively, proofs of these, so ∆m = Γr = ∅, φm = ψ,
θr = (ψ → η). Then

∆1 | φ1,∆2 | φ2, . . . ,∆m | φm,Γ1 | θ1,Γ2 | θ2, . . . ,Γr | θr, ∅ | η

is a proof of ∅ |= L η, this last sequent ∅ | η being justified from ∆m | φm (= ∅ |ψ) and Γr | θr
(= ∅ | (ψ → η)) by MP.

(iii) From axiom  L1 and (i)

⊢ L (θ → θ) → ((θ → (θ → θ)) → (θ → θ)).

From this and the instance ⊢ L (θ → θ) of (a1), using (ii),

⊢ L (θ → (θ → θ)) → (θ → θ). (4)

(iv) From axiom  L4, using (i),

⊢ L ((θ → (θ → θ)) → (θ → θ)) → (((θ → θ) → θ) → θ)

so with (4) using (ii),

⊢ L (θ → θ) → θ) → θ)). (5)

Feedback

A1. Very well done, almost everyone got full marks.

A2. Rather few students got out part (a). What should have been a hint to you was having
θ 6|∼ ¬ψ in the premises. The only way you can use this is with RMO and another premiss
of the form θ |∼ ζ for some ζ . At the start we don’t have such a premiss, but we can obtain
one by applying CON to θ ∧ φ |∼ ¬ψ, giving θ |∼ φ → ¬ψ, and now applying RMO gives
θ ∧ ψ |∼ φ → ¬ψ. We’re now nearly there since θ ∧ ψ |∼ ψ (via SCL) and with AND,

θ ∧ ψ |∼ ψ ∧ (φ→ ¬ψ) |= ¬φ etc.

Part (b) was well done, most scored highly on this.

A3. The definition was done well but part (i) proved tricky. The point was that the left hand
side holding at i in a frame meant that there must be some j ∈ W such that 〈i, j〉 ∈ E. Then
if j |= θ we have i |= 3θ whilst if j |= ¬θ then i |= 3¬θ, equivalently i |= ¬2θ.

Part (ii) was generally well done except that some students didn’t make explicit what their
proposed frame, neither giving it as 〈W,E, V 〉 nor putting in the arrows on the edges in their
graph.

A4. A lot of students lost marks by omitting to say that the Γi need to be finite in the
definition of a proof. Apart from that the question was mostly done well, though an error
which occurred a few times was to apply NEC to a sequent with a non-empty left hand side.
The NEC rule doesn’t allow this.
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A5. Not very well done, no one got full marks. Several students wrote down C1-C4. This
wasn’t asked for in the question, so was just a waste of time. Most students did know what
the Mostert-Shields Theorem said but then failed to correctly work out the set of x ∈ [0, 1] for
which G(x, x) = x, usually taking it, incorrectly, to be {0, 1

2
, 1}.

At this point a common error was to go on to say that the structure
〈[0, 1

2
], G,<〉 was either 〈[0, 1

2
],×, <〉 or 〈[0, 1

2
],max{0, x+y−1}, <〉.What they should have said

was that the structure 〈[0, 1
2
], G,<〉 was isomorphic to either 〈[0, 1],×, <〉 or 〈[0, 1],max{0, x+

y−1}, <〉. Overall then whilst most students knew the words in the Mostert-Shields Theorem
they often didn’t actually understand it.

A6. Average mark for this question was around 6 out of 10. A surprisingly common error in

the definition of ⊢ L was to start with ‘There exists a [0, 1]-valuation w . . . ’ rather than
‘For all [0, 1]-valuations w . . . ’. In the statement of the Completeness Theorem for  L the
requirement that Γ be finite was frequently omitted.

Part (i) was done well, and so too was part (ii) although the choice of cases wasn’t always the
most efficient.

B7. Most students scored well on this question but few actually scored full marks. The
common error was to arrive at the point where you had i minimal such that si ∩ Sθ 6= ∅, so
si ∩ Sθ ⊆ Sφ, and you supposed that si ∩ Sθ * Sψ. Then there must be some α ∈ si ∩ Sθ such
that α ∈ S¬ψ and of course α ∈ Sφ so α ∈ si ∩Sφ ∩S¬ψ. The mistake now was to assume that
this same i was minimal such that si ∩ Sφ ∩ S¬ψ 6= ∅, so from the premise φ ∧ ¬ψ |∼ ψ this
gave

∅ 6= si ∩ Sφ ∩ S¬ψ ⊆ Sψ,

which as you noted is impossible, so the assumption si ∩ Sθ * Sψ must be wrong. What
you should have argued was that since si ∩ Sφ ∩ S¬ψ 6= ∅ there must be a least j such that
sj ∩ Sφ ∩ S¬ψ 6= ∅ and from that

∅ 6= sj ∩ Sφ ∩ S¬ψ ⊆ Sψ,

again giving the required contradiction.

The second part of the question was well done, except some students used sentences θ∧φ∧¬ψ
as elements of the si where they should have been using atoms such as p ∧ q ∧ ¬r.

B8. The first part was mostly well done although some students wrote Vw(θ) = 1 instead of
i |= θ (etc.) even when θ is not a propositional variable. In modal logic Vw only gets defined
on propositional variables. Whilst I was vexed by this misuse I didn’t take any marks off for
it. In the second part some students wrote rather a lot without actually getting anywhere –
if you don’t see how to answer a question it is best to go to another question rather than just
ramble on like a monkey at a typewriter hoping you’ll say something that I’m looking for!

B9. Parts (iii),(iv) were done rather well but unfortunately almost no one understood what
was being asked for in (i) and (ii) – essentially I wanted you to give the proof of Proposition
8 in the Real Valued Logics notes. So instead of saying that if ψ is an instance of an axiom

then |ψ is a proof of ⊢ L ψ I got answers involving the Completeness Theorem – whose proof
is even too long and complicated to be included in this course!
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