A1.

$$\theta \sim_{\vec{s}} \phi \iff \begin{cases} \forall i \ s_i \cap S_\theta = \emptyset & \text{or} \\ \exists i \ s_i \cap S_\theta \neq \emptyset & \text{and for the least such } i, \ s_i \cap S_\theta \subseteq S_\phi \end{cases}$$

The Representation Theorem for Rational Consequence Relations: Every rational consequence relation on SL is of the form $\succ_{\vec{s}}$ for some $\vec{s} = s_1, s_2, \ldots, s_m \subseteq \operatorname{At}^L$, and conversely every $\succ_{\vec{s}}$ is a rational consequence relation.

(i) Not true, (ii) True (iii) True.

A2. (a) Assume $\theta \land \phi \models \neg \psi$ and $\theta \not\models \neg \psi$. From $\theta \land \phi \models \neg \psi$ by CON, $\theta \models \phi \rightarrow \neg \psi$ and with $\theta \not\models \neg \psi$ and RMO, $\theta \land \psi \models \phi \rightarrow \neg \psi$. Since $\theta \land \psi \models \psi$, $\theta \land \psi \models \psi$ by SCL. Hence, with $\theta \land \psi \models \phi \rightarrow \neg \psi$. and AND, $\theta \land \psi \models \psi \land (\phi \rightarrow \neg \psi)$, and, since $\psi \land (\phi \rightarrow \neg \psi) \models \neg \phi$, with RWE, $\theta \land \psi \models \neg \phi$, as required.

(b) As usual let $\alpha_1 = p \wedge q, \alpha_2 = p \wedge \neg q, \alpha_3 = \neg p \wedge q, \alpha_4 = \neg p \wedge \neg q$. Running the Z-algorithm we get:

$$\begin{aligned} A_{0} &= \{ \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \}, \\ K_{0} &= K = \{ p \lor q \triangleright \neg p, \neg q \triangleright p \}. \\ u_{1} &= A_{0} \cap S_{\neg (p \lor q) \lor \neg p} \cap S_{\neg \neg q \lor p} = A_{0} \cap S_{\neg p} \cap S_{q \lor p} \\ &= \{ \alpha_{3}, \alpha_{4} \} \cap \{ \alpha_{1}, \alpha_{2}, \alpha_{3} \} = \{ \alpha_{3} \}. \end{aligned}$$

$$\begin{aligned} A_{1} &= A_{0} - u_{1} = \{ \alpha_{1}, \alpha_{2}, \alpha_{4} \}, \\ K_{1} &= \{ \neg q \triangleright p, \}, \text{ since } S_{p \lor q} \cap u_{1} = \{ \alpha_{1}, \alpha_{2}, \alpha_{3} \} \cap \{ \alpha_{3} \} \neq \emptyset \\ S_{\neg q} \cap u_{1} = \{ \alpha_{2}, \alpha_{4} \} \cap \{ \alpha_{3} \} = \emptyset, \\ u_{2} &= A_{1} \cap S_{\neg \neg q \lor p} = \{ \alpha_{1}, \alpha_{2}, \alpha_{4} \} \cap \{ \alpha_{1}, \alpha_{2}, \alpha_{3} \} = \{ \alpha_{1}, \alpha_{2} \}. \end{aligned}$$

$$\begin{aligned} A_{2} &= A_{1} - u_{2} = \{ \alpha_{4} \}, \\ K_{2} &= \emptyset \text{ since } u_{2} \cap S_{\neg q} = \{ \alpha_{2} \} \neq \emptyset. \\ u_{3} &= A_{2} = \{ \alpha_{4} \}. \end{aligned}$$

Since all the atoms have now been used up we must have $u_4 = \emptyset$ so the rational closure of K is $\succ_{\vec{u}}$ where

$$\vec{u} = u_1, u_2, u_3 = \{ \alpha_3 \}, \{ \alpha_1, \alpha_2 \}, \{ \alpha_4 \}.$$

A3. For $\Gamma \subseteq SML$, $\theta \in SML$, $\Gamma \models^{K} \theta$ iff for all frames $\langle W, E, V \rangle$ and $i \in W$, if $\langle W, E, V \rangle$, $i \models \phi$ for all $\phi \in \Gamma$ then $\langle W, E, V \rangle$, $i \models \theta$.

(i) Let $\langle W, E, V \rangle$ be a frame, $i \in W$ and suppose that (in $\langle W, E, V \rangle$) $i \models \neg \Box \Diamond \theta$. Then there must be some $j \in W$ such that $\langle i, j \rangle \in E$ and $j \nvDash \Diamond \theta$. If $i \models \Box \theta$ then $j \models \theta$ so $i \models \Diamond \theta$ and $i \models \neg \Box \theta \lor \Diamond \theta$. On the other hand if $i \nvDash \Box \theta$ then $i \models \neg \Box \theta$ and again $i \models \neg \Box \theta \lor \Diamond \theta$. Either way then $i \models \neg \Box \theta \lor \Diamond \theta$ and $\neg \Box \Diamond \theta \models^K \neg \Box \theta \lor \Diamond \theta$ follows.

(ii) Let $\langle W, E, V \rangle$ be the frame with $W = \{0, 1, 2\}, E = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}, V_0(p) = V_0(q) = 1, V_1(p) = 0, V_1(q) = 1, V_2(p) = 1, V_2(q) = 0$. Then $0 \nvDash \Box q$, since $\langle 0, 2 \rangle \in E$ and $2 \nvDash q$, so

$$1 \models \neg \Box q. \tag{1}$$

¹As usual these are more detailed than I would necessarily require from the students since they are also intended to serve an instructional purpose for the students.

Also $0 \models \Box (p \lor q)$, since $1 \models q, 2 \models p$ so at both vertices accessible from $0, p \lor q$ holds, and $0 \nvDash \Box p$ since $(0, 1) \in E$ and $1 \nvDash p$. So

$$0 \nvDash \Box (p \lor q) \to \Box p.$$

Putting this together with (1) gives that $\neg \Box q \nvDash^K \Box (p \lor q) \rightarrow \Box p$.

A4. A proof in D is a sequence of sequents $\Gamma_1|\theta_1, \Gamma_2|\theta_2, \ldots, \Gamma_m|\theta_m$, where the Γ_i are finite subsets of SML and the $\theta_i \in SML$, such that for each $i = 1, 2, \ldots, m$, either $\Gamma_i|\theta_i$ is an instance of an axiom of D or $\exists j_1, j_2, \ldots, j_s < i$ such that

$$\frac{\Gamma_{j_1}|\theta_{j_1},\Gamma_{j_2}|\theta_{j_2},\ldots,\Gamma_{j_s}|\theta_{j_s}}{\Gamma_i|\theta_i}$$

is an instance of a rule of proof of D.

 $\Gamma \vdash^{D} \theta$ if \exists a proof in D, $\Gamma_{1}|\theta_{1}, \Gamma_{2}|\theta_{2}, \ldots, \Gamma_{m}|\theta_{m}$, such that $\Gamma_{m} \subseteq \Gamma$ and $\theta_{m} = \theta$.

Proof in D of $\vdash^D \Box \Box \theta \rightarrow \Box \Diamond \theta$:

1	$\Box\theta \mid \diamondsuit\theta$	D axiom
2	$\mid (\Box \theta \rightarrow \Diamond \theta)$	IMR, 1
3	$ \ \Box (\Box \theta \rightarrow \diamondsuit \theta)$	NEC, 2
4	$\Box(\Box\theta \to \Diamond\theta) \mid \Box\Box\theta \to \Box\Diamond\theta$	K axiom
5	$ \Box (\Box \theta \to \Diamond \theta) \to (\Box \Box \theta \to \Box \Diamond \theta)$	IMR 4
6	$ \Box \Box \theta \rightarrow \Box \diamondsuit \theta$	MP $3, 5.$

A5. Let $\wedge (=F_{\wedge})$ satisfy (C1-C4) and let $A = \{x \in [0,1] \mid x \wedge x = x\}$. Then for $x \in A$ and $0 \le z \le x \le y \le 1$,

$$z \wedge y = y \wedge z = z = \min\{y, z\},\$$

and if a < b, $a, b \in A$ and $(a, b) \cap A = \emptyset$ then on [a, b] either $\langle [a, b], \wedge, < \rangle \cong \langle [0, 1], \times, < \rangle$ or $\langle [a, b], \wedge, < \rangle \cong \langle [0, 1], \max\{0, x + y - 1\}, < \rangle$.

Let $G: [0,1]^2 \to [0,1]$ be defined by

$$G(x, y) = \min\{x, y, 2xy\}.$$

and assume that satisfies C1-C4. Notice that for $x \in [0,1]$, $2x^2 < x$ iff $0 < x < \frac{1}{2}$, so

$$G(x,x) = \min\{x, x, 2x^2\} = x \iff x = 0 \text{ or } \frac{1}{2} \le x \le 1$$

and

$$A = \{x \in [0,1] \mid G(x,x) = x\} = \{0\} \cup [\frac{1}{2},1].$$

By the above result then $G(x, y) = \min\{x, y\}$ whenever either $x \in [\frac{1}{2}, 1]$ or $y \in [\frac{1}{2}, 1]$. On $[0, \frac{1}{2}], \langle [0, \frac{1}{2}], G, \langle \rangle$ is isomorphic to either $\langle [0, 1], \times, \langle \rangle$ or to $\langle [0, 1], \max\{0, x + y - 1\}, \langle \rangle$ and since $G(x, x) = 2x^2 > 0$ for $x \in (0, \frac{1}{2}]$ it must be the former of these since the corresponding property fails for $\langle [0, 1], \max\{0, x + y - 1\}, \langle \rangle$.

A6. For $\Gamma \subseteq SL$, $\theta \in SL$, $\Gamma \models^{\mathbf{L}} \theta$ if for all [0, 1]-valuations w, if $w(\phi) = 1$ for all $\phi \in \Gamma$ then $w(\theta) = 1$.

The Completeness Theorem for L states that for $\Gamma \subseteq SL$, Γ finite, and $\theta \in SL$, $\Gamma \models^{\mathbf{L}} \theta$ iff $\Gamma \vdash^{\mathbf{L}} \theta$.

(i) Let $w(p) = \frac{1}{2}$, $w(q) = \frac{1}{3}$, so $w(\neg p) = 1 - \frac{1}{2} = \frac{1}{2}$. Recalling that $w(\theta \to \phi) = 1 \iff w(\theta) \le w(\phi)$ we have that $w(p \to q) < 1$, $w(\neg p \to q) < 1$ so

$$w((p \to q) \underline{\vee} (\neg p \to q)) = \max\{w(p \to q), (\neg p \to q)\} < 1$$

Hence $\nvDash^{\mathbf{L}}(p \to q) \underline{\vee}(\neg p \to q)$ and by the Completeness Theorem $\nvDash^{\mathbf{L}}(p \to q) \underline{\vee}(\neg p \to q)$.

(ii) Let w be a [0, 1]-valuation. Suppose that

$$w((p \to q) \lor (\neg p \to q)) = \min\{w(p \to q) + w(\neg p \to q), 1\} < 1.$$

Then

$$w((p \to q) \lor (\neg p \to q)) = w(p \to q) + w(\neg p \to q) < 1$$
(2)

and both $w(p \to q), w(\neg p \to q) < 1$, so

l

$$w(p \to q) = 1 - w(p) + w(q),$$

$$w(\neg p \to q) = 1 - w(\neg p) + w(q) = 1 - (1 - w(p)) + w(q) = w(p) + w(q).$$

But then

$$w(p \to q) + w(\neg p \to q) = (1 - w(p) + w(q)) + (w(p) + w(q)) = 1 + 2w(q) \ge 1,$$

contradicting (2). Hence we must have $w((p \to q) \lor (\neg p \to q)) = 1$ and since w was arbitrary,

$$\models^{\mathbf{L}} (p \to q) \lor (\neg p \to q).$$

By the Completeness Theorem then

$$\vdash^{\mathbf{L}} (p \to q) \lor (\neg p \to q).$$

B7. Let $\vec{s} = s_1, s_2, \ldots, s_m$ and assume that $\theta \triangleright_{\vec{s}} \phi$ and $\phi \wedge \neg \psi \models_{\vec{s}} \psi$. By the Representation Theorem it is enough to show that $\theta \models_{\vec{s}} \psi$. If $s_i \cap S_{\theta} = \emptyset$ for all $i = 1, \ldots, m$ then $\theta \models_{\vec{s}} \psi$. So assume that for some $i, s_i \cap S_{\theta} \neq \emptyset$, say i is the least such. Then from $\theta \models_{\vec{s}} \phi, s_i \cap S_{\theta} \subseteq S_{\phi}$.

Suppose that $\theta \not\sim s_i \psi$. Then $s_i \cap S_\theta \subsetneq S_\psi$ so for some $\alpha \in s_i \cap S_\theta$, $\alpha \notin S_\psi$. $\therefore \alpha \in S_{\neg\psi}$. Also $\alpha \in S_\phi$ since $s_i \cap S_\theta \subseteq S_\phi$ so $\alpha \in S_\phi \cap S_{\neg\psi} = S_{\phi \wedge \neg\psi}$. Hence $s_i \cap S_{\phi \wedge \neg\psi} \neq \emptyset$. Let j be minimal such that $s_j \cap S_{\phi \wedge \neg\psi} \neq \emptyset$. Then from $\phi \wedge \neg \psi \succ s_i \psi$, $s_j \cap S_{\phi \wedge \neg\psi} \subseteq S_\psi$. But clearly $s_j \cap S_{\phi \wedge \neg\psi} \subseteq S_{\neg\psi}$ so we have

$$\emptyset \neq s_j \cap S_{\phi \wedge \neg \psi} \subseteq S_{\psi} \cap S_{\neg \psi} = S_{\psi} \cap (At^L - S_{\psi}) = \emptyset,$$

contradiction. We conclude that $\theta \not\sim_{\vec{s}} \psi$ is false, i.e. $\theta \not\sim_{\vec{s}} \psi$, as required.

For the second part let $L = \{p, q, r\}, \ \theta = p, \ \phi = q, \ \psi = r \text{ and } \vec{s} = \{\neg p \land q \land r\}, \{p \land q \land \neg r\}.$ Then $\theta \land \neg \phi \mid_{\sim \vec{s}} \phi$ and $\phi \mid_{\sim \vec{s}} \psi$ but $\theta \mid_{\neq \vec{s}} \psi$ so the rule fails for this choice of rcr and θ, ϕ, ψ . **B8.** The proof is by induction on $n \in \mathbb{N}$ such that $\theta \in SML_n$. If n = 0 then $\theta = p$ for some $p \in L$ and

$$\langle W, E, V \rangle, \ w \models \theta \iff V_w(p) = 1 \iff V'_w(p) = 1, \text{ since } V_w = V'_w, \iff \langle W', E', V' \rangle, w \models \theta.$$

Now suppose that $\theta \in SML_{n+1} - SML_n$ and the result holds for $\phi \in SML_n$. If $\theta = (\phi \land \psi)$ with $\phi, \psi \in SML_n$ then

$$\begin{split} \langle W, E, V \rangle, w &\models \theta &\iff \langle W, E, V \rangle, w \models \phi \text{ and } \langle W, E, V \rangle, w \models \psi \\ &\iff \langle W', E', V' \rangle, w \models \phi \text{ and } \langle W', E', V' \rangle, w \models \psi \\ & \text{by Inductive Hypothesis,} \\ &\iff \langle W', E', V' \rangle, w \models \theta. \end{split}$$

The cases for $\theta = \neg \phi, (\phi \lor \psi), (\phi \to \psi)$ are exactly similar. Finally if $\theta = \Box \phi$ with $\phi \in SML_n$ then

$$\begin{array}{ll} \langle W,E,V\rangle,w\models\theta & \Longleftrightarrow & \forall y\in W \text{ with } \langle w,y\rangle\in E, \, \langle W,E,V\rangle,y\models\phi\\ & \Leftrightarrow & \forall y\in W \text{ with } \langle w,y\rangle\in E, \, \langle W',E',V'\rangle,y\models\phi,\\ & \text{ by Inductive Hypothesis,}\\ & \Leftrightarrow & \forall y\in W' \text{ with } \langle w,y\rangle\in E', \, \langle W',E',V'\rangle,y\models\phi,\\ & \text{ since for } w\in W, \, \{y\in W\,|\,\langle w,y\rangle\in E\}=\{y\in W'\,|\,\langle w,y\rangle\in E'\},\\ & \Longleftrightarrow & \langle W',E',V'\rangle,w\models\theta, \end{array}$$

which concludes the proof that for $w \in W$, $\theta \in SML$,

$$\langle W, E, V \rangle, w \models \theta \iff \langle W', E', V' \rangle, w \models \theta.$$
 (3)

To show the last part suppose that $\models^D \Diamond \theta$ but not $\models^D \theta$. Then there is a *D*-frame $\langle W, E, V \rangle$ (i.e. serial frame) and $w \in W$ such that

$$\langle W, E, V \rangle, \ w \nvDash \theta.$$

Let $v \notin W$ and $\langle W', E', V' \rangle$ be as above (with V'_v chosen arbitrarily). Then $\langle W', E', V' \rangle$ is serial so since $\vdash^D \Diamond \theta$, by the Completeness Theorem for D,

$$\langle W', E', V' \rangle, v \models \Diamond \theta.$$

But since w is the only vertex in W' accessible from v it must be the case that

$$\langle W', E', V' \rangle, w \models \theta,$$

and hence by (3),

 $\langle W, E, V \rangle, w \models \theta,$

– contradiction. Hence we must have $\vdash^D \theta$, as required.

B9. (i) If ψ is an axiom of $\models^{\mathbf{L}}$ then $\emptyset \mid \psi$ is a proof, so $\vdash^{\mathbf{L}} \psi$.

(ii) Suppose that $\vdash^{\mathbf{L}} \psi$ and $\vdash^{\mathbf{L}} (\psi \to \eta)$, say $\Delta_1 | \phi_1, \Delta_2 | \phi_2, \ldots, \Delta_m | \phi_m$ and $\Gamma_1 | \theta_1, \Gamma_2 | \theta_2, \ldots, \Gamma_r | \theta_r$ are, respectively, proofs of these, so $\Delta_m = \Gamma_r = \emptyset$, $\phi_m = \psi$, $\theta_r = (\psi \to \eta)$. Then

$$\Delta_1 \mid \phi_1, \Delta_2 \mid \phi_2, \dots, \Delta_m \mid \phi_m, \Gamma_1 \mid \theta_1, \Gamma_2 \mid \theta_2, \dots, \Gamma_r \mid \theta_r, \emptyset \mid \eta$$

is a proof of $\emptyset \models^{\mathbf{L}} \eta$, this last sequent $\emptyset \mid \eta$ being justified from $\Delta_m \mid \phi_m \ (= \emptyset \mid \psi)$ and $\Gamma_r \mid \theta_r \ (= \emptyset \mid (\psi \to \eta))$ by MP.

(iii) From axiom L1 and (i)

$$\vdash^{\mathbf{L}} (\theta \to \theta) \to ((\theta \to (\theta \to \theta)) \to (\theta \to \theta)).$$

From this and the instance $\vdash^{\mathbf{L}} (\theta \to \theta)$ of (a1), using (ii),

$$\vdash^{\mathbf{L}} (\theta \to (\theta \to \theta)) \to (\theta \to \theta).$$
⁽⁴⁾

(iv) From axiom L4, using (i),

so with (4) using (ii),

$$\vdash^{\mathbf{L}} (\theta \to \theta) \to \theta) \to \theta)). \tag{5}$$

Feedback

A1. Very well done, almost everyone got full marks.

A2. Rather few students got out part (a). What should have been a hint to you was having $\theta \not\sim \neg \psi$ in the premises. The only way you can use this is with RMO and another premises of the form $\theta \not\sim \zeta$ for some ζ . At the start we don't have such a premise, but we can obtain one by applying CON to $\theta \land \phi \not\sim \neg \psi$, giving $\theta \not\sim \phi \rightarrow \neg \psi$, and now applying RMO gives $\theta \land \psi \not\sim \phi \rightarrow \neg \psi$. We're now nearly there since $\theta \land \psi \not\sim \psi$ (via SCL) and with AND,

 $\theta \land \psi \models \psi \land (\phi \to \neg \psi) \models \neg \phi$ etc.

Part (b) was well done, most scored highly on this.

A3. The definition was done well but part (i) proved tricky. The point was that the left hand side holding at *i* in a frame meant that there must be some $j \in W$ such that $\langle i, j \rangle \in E$. Then if $j \models \theta$ we have $i \models \Diamond \theta$ whilst if $j \models \neg \theta$ then $i \models \Diamond \neg \theta$, equivalently $i \models \neg \Box \theta$.

Part (ii) was generally well done except that some students didn't make explicit what their proposed frame, neither giving it as $\langle W, E, V \rangle$ nor putting in the arrows on the edges in their graph.

A4. A lot of students lost marks by omitting to say that the Γ_i need to be finite in the definition of a proof. Apart from that the question was mostly done well, though an error which occurred a few times was to apply NEC to a sequent with a non-empty left hand side. The NEC rule doesn't allow this.

A5. Not very well done, no one got full marks. Several students wrote down C1-C4. This wasn't asked for in the question, so was just a waste of time. Most students did know what the Mostert-Shields Theorem said but then failed to correctly work out the set of $x \in [0, 1]$ for which G(x, x) = x, usually taking it, incorrectly, to be $\{0, \frac{1}{2}, 1\}$.

At this point a common error was to go on to say that the structure

 $\langle [0, \frac{1}{2}], G, < \rangle$ was either $\langle [0, \frac{1}{2}], \times, < \rangle$ or $\langle [0, \frac{1}{2}], \max\{0, x+y-1\}, < \rangle$. What they should have said was that the structure $\langle [0, \frac{1}{2}], G, < \rangle$ was isomorphic to either $\langle [0, 1], \times, < \rangle$ or $\langle [0, 1], \max\{0, x+y-1\}, < \rangle$. Overall then whilst most students knew the words in the Mostert-Shields Theorem they often didn't actually understand it.

A6. Average mark for this question was around 6 out of 10. A surprisingly common error in the definition of \vdash^{L} was to start with 'There exists a [0, 1]-valuation w...' rather than 'For all [0, 1]-valuations w...'. In the statement of the Completeness Theorem for L the requirement that Γ be finite was frequently omitted.

Part (i) was done well, and so too was part (ii) although the choice of cases wasn't always the most efficient.

B7. Most students scored well on this question but few actually scored full marks. The common error was to arrive at the point where you had *i* minimal such that $s_i \cap S_{\theta} \neq \emptyset$, so $s_i \cap S_{\theta} \subseteq S_{\phi}$, and you supposed that $s_i \cap S_{\theta} \nsubseteq S_{\psi}$. Then there must be some $\alpha \in s_i \cap S_{\theta}$ such that $\alpha \in S_{\neg \psi}$ and of course $\alpha \in S_{\phi}$ so $\alpha \in s_i \cap S_{\phi} \cap S_{\neg \psi}$. The mistake now was to assume that this same *i* was minimal such that $s_i \cap S_{\phi} \cap S_{\neg \psi} \neq \emptyset$, so from the premise $\phi \land \neg \psi \succ \psi$ this gave

$$\emptyset \neq s_i \cap S_\phi \cap S_{\neg \psi} \subseteq S_\psi,$$

which as you noted is impossible, so the assumption $s_i \cap S_{\theta} \not\subseteq S_{\psi}$ must be wrong. What you should have argued was that since $s_i \cap S_{\phi} \cap S_{\neg\psi} \neq \emptyset$ there must be a least j such that $s_j \cap S_{\phi} \cap S_{\neg\psi} \neq \emptyset$ and from that

$$\emptyset \neq s_j \cap S_\phi \cap S_{\neg \psi} \subseteq S_\psi,$$

again giving the required contradiction.

The second part of the question was well done, except some students used sentences $\theta \wedge \phi \wedge \neg \psi$ as elements of the s_i where they should have been using atoms such as $p \wedge q \wedge \neg r$.

B8. The first part was mostly well done although some students wrote $V_w(\theta) = 1$ instead of $i \models \theta$ (etc.) even when θ is not a propositional variable. In modal logic V_w only gets defined on propositional variables. Whilst I was vexed by this misuse I didn't take any marks off for it. In the second part some students wrote rather a lot without actually getting anywhere – if you don't see how to answer a question it is best to go to another question rather than just ramble on like a monkey at a typewriter hoping you'll say something that I'm looking for!

B9. Parts (iii),(iv) were done rather well but unfortunately almost no one understood what was being asked for in (i) and (ii) – essentially I wanted you to give the proof of Proposition 8 in the Real Valued Logics notes. So instead of saying that if ψ is an instance of an axiom then $|\psi|$ is a proof of $\vdash^{L} \psi$ I got answers involving the Completeness Theorem – whose proof is even too long and complicated to be included in this course!