MATH43001/63001, January 2013 Exam, Solutions¹ - **A1.** (i) $f(w_1) \notin TL$ since this word contains a bound variable (w_1) and we can prove by induction on |t| that no term t of L can contain a bound variable. [Not necessary to give the proof but for the record: Clearly true if t is a constant or free variable x_i and if $t = f(t_1)$ and no bound variable occurs in t_1 then none will occur in t either.] - (ii) $f)x_1 \notin TL$ since no term can end with (. [Not necessary to give the proof but for the record: Clearly true if t is a free variable x_i and if $t = f(t_1)$ then t ends in), so not in (. Hence the assertion is true for all $t \in TL$ by induction on |t|.] - (iii) $\exists w_2(R(w_2, x_1) \to \forall w_1 R(w_1, x_1)) \in FL \text{ since } R(x_2, x_1) \in FL \text{ by L1, so } \forall w_1 R(w_1, x_1) \in FL \text{ by L3. By L2 then } (R(x_2, x_1) \to \forall w_1 R(w_1, x_1)) \in FL \text{ and finally by L3 } \exists w_2((R(w_2, x_1) \to \forall w_1 R(w_1, x_1)) \in FL.$ - (iv) $(\neg \exists w_1 \, R(x_1, x_1)) \notin FL$ since we can prove by induction on $|\theta|$ for $\theta \in FL$ that the number of left round brackets '(' in θ equals the number of relation, function and binary connective (i.e. \land, \lor, \rightarrow) symbols occurring in θ and this is not the case for $(\neg \exists w_1 \, R(x_1, x_1))$. [Again it is not necessary to prove this but, for the record, such a proof could go as follows: We first prove it for terms $t \in TL$ (where of course there are are no relation symbols nor connectives) by induction on |t|. Moving on to formulae it is clearly true for $R(t_1, t_2)$ since it is true for t_1, t_2 and along with t_1 we introduce one new '('. Finally, by inspection we can see that if it holds for t_1 for t_2 then it holds for t_2 for t_3 for t_4 (v) $$M \models \forall w_1 R(w_1, f(w_1)) \iff \text{for all } n \in \mathbb{N}^+, \langle n, f^M(n) \rangle \in R^M \iff \text{for all } n \in \mathbb{N}^+, n | f^M(n) \iff \text{for all } n \in \mathbb{N}^+, n | n + 1$$ which is *not true*, for example $2 \nmid (2+1)$. [In your exam script it is enough to simply give an answer 'true'/'false', similarly with parts (vi),(vii).] ``` (vi) M \models \forall w_1 \exists w_2 (R(w_1, w_2) \land \neg R(w_2 \land w_1)) \iff for each n \in \mathbb{N}^+ there is an m \in \mathbb{N}^+ such that \langle n, m \rangle \in R^M and \langle m, n \rangle \notin R^M ``` \iff for each $n \in \mathbb{N}^+$ there is an $m \in \mathbb{N}^+$ such that n | m and $m \nmid n$ which is true since for each $n \in \mathbb{N}^+$, n|2n but $2n \nmid n$. ``` (vii) M \models \exists w_1 \forall w_2 \forall w_3 (R(w_2, f(w_1)) \land R(w_3, f(w_1))) \rightarrow (R(w_2, w_3) \lor R(w_3, w_2)) \iff there is n \in \mathbb{N}^+ such that for any m, k \in \mathbb{N}^+ if \langle m, f^M(n) \rangle, \langle k, f^M(n) \rangle \in R^M then either \langle m, k \rangle \in R^M or \langle k, m \rangle \in R^M \iff there is n \in \mathbb{N}^+ such that for any m, k \in \mathbb{N}^+ if m \mid (n+1) and k \mid (n+1) then either m \mid k or k \mid m. ``` which is *true* since for n = 1 it is the case that for any two divisors m, k of 1 + 1 = 2, either m|k or k|m. ¹These solutions are more detailed than I would expect in the exam. That's because I want them to also serve an educational purpose when given with 'last year's paper' next year(!) $$\theta_1(x_1) = \forall w_1 R(x_1, w_1)$$ $$\theta_2(x_1, x_2) = (R(x_1, x_2) \land R(x_2, x_1))$$ $$\theta_3(x_1) = \exists w_2 (\forall w_1 \, R(w_2, w_1) \land \neg R(f(w_2), x_1))$$ $$\theta_4(x_1) = \exists w_2 (\forall w_1 \, R(w_2, w_1) \land \forall w_3 \, (R(w_3, x_1) \to (R(w_3, w_2) \lor R(f(w_2), w_3))))$$ $\phi = \forall w_1 R(w_1, f(w_1))$ (since always $n \leq n + 1$, so this holds in K, but by (v) does not hold in M). ## **A2.** A suitable logical equivalent (there are many possibilities here) in PNF is $$\exists w_3 \exists w_1 \forall w_2 (R(w_1, w_2) \to R(w_3, w_3)).$$ It is enough to just write this down for the marks but for the record we could argue: Since $\exists w_1 R(w_1, w_1) \equiv \exists w_3 R(w_3, w_3)$, by the 'Useful Equivalents' (UEs for short), $$(\forall w_1 \exists w_2 \, R(w_1, w_2) \to \exists w_1 R(w_1, w_1)) \equiv (\forall w_1 \exists w_2 \, R(w_1, w_2) \to \exists w_3 R(w_3, w_3)). \tag{1}$$ Again by the UEs, $$(\forall w_1 \exists w_2 \, R(w_1, w_2) \to R(x_3, x_3)) \equiv \exists w_1 \, (\exists w_2 \, R(w_1, w_2) \to R(x_3, x_3)) \tag{2}$$ $$(\exists w_2 \, R(x_1, w_2) \to R(x_3, x_3)) \equiv \forall w_2 \, (R(x_1, w_2) \to R(x_3, x_3)). \tag{3}$$ From (2),(3) resp. and the UEs, $$\exists w_3 \, (\forall w_1 \exists w_2 \, R(w_1, w_2) \to R(w_3, w_3)) \equiv \exists w_3 \exists w_1 \, (\exists w_2 \, R(w_1, w_2) \to R(w_3, w_3)) \tag{4}$$ $$\exists w_3 \exists w_1 \, (\exists w_2 \, R(w_1, w_2) \to R(w_3, w_3)) \equiv \exists w_3 \exists w_1 \forall w_2 \, (R(w_1, w_2) \to R(w_3, w_3)) \tag{5}$$ Putting together (1),(4),(5) with the transitivity of \equiv gives the stated PNF. Clearly we could have altered the order in which we 'moved out' the quantifiers here to give logically equivalent, but formally different, PNF's, for example $$\exists w_3 \exists w_1 \forall w_2 (R(w_1, w_2) \to R(w_3, w_3)) \equiv \exists w_1 \forall w_2 \exists w_3 (R(w_1, w_2) \to R(w_3, w_3)).$$ ## **A3.** A (formal) *proof* (in PC) is a sequence of sequents $$\Gamma_1 \mid \phi_1, \ \Gamma_2 \mid \phi_2 \dots, \Gamma_m \mid \phi_m$$ where the Γ_i are finite subsets of FL, the $\phi_i \in FL$ and for i = 1, 2, ..., m, either $\Gamma_i \mid \phi_i$ is an instance of REF or there are some $j_1, j_2, ..., j_s < i$ such that $$\frac{\Gamma_{j_1} \mid \phi_{j_1}, \ \Gamma_{j_2} \mid \phi_{j_2}, \dots, \Gamma_{j_s} \mid \phi_{j_s}}{\Gamma_i \mid \phi_i}$$ is an instance of one of the rules of proof. A formal proof of $\exists w_1 P(w_1), \ \forall w_1 (P(w_1) \to Q(w_1)) \vdash \exists w_1 Q(w_1) :$ 1 $$P(x_1), \forall w_1 (P(w_1) \to Q(w_1)) | P(x_1)$$ REF 2 $$P(x_1), \forall w_1 (P(w_1) \to Q(w_1)) | \forall w_1 (P(w_1) \to Q(w_1))$$ REF 3 $$P(x_1), \forall w_1 (P(w_1) \to Q(w_1)) \mid (P(x_1) \to Q(x_1))$$ $\forall O, 2$ 4 $$P(x_1), \forall w_1 (P(w_1) \to Q(w_1)) | Q(x_1)$$ MP, 1,3 5 $$P(x_1), \forall w_1 (P(w_1) \to Q(w_1)) \mid \exists w_1 Q(x_1)$$ $\exists I, 4$ 6 $$\exists w_1 P(w_1), \ \forall w_1 (P(w_1) \to Q(w_1)) \ | \ \exists w_1 Q(x_1)$$ $\exists O, 5$ - **A4.** Completeness Theorem: For $\Gamma \subseteq FL$ and $\theta \in FL$, $\Gamma \vdash \theta \iff \Gamma \models \theta$. - (a) Let M be a structure for L and suppose that $$M \models \exists w_1 \forall w_2 \left(R(w_1, w_2) \lor R(w_2, w_1) \right),$$ so for some $a \in |M|$, $$M \models \forall w_2 (R(a, w_2) \lor R(w_2, a)),$$ equivalently for all $b \in |M|$, $M \models R(a, b) \lor R(b, a)$. Taking b = a here gives $M \models R(a, a) \lor R(a, a)$ so $M \models R(a, a)$ and $M \models \exists w_1 R(w_1, w_1)$. This shows that $$\exists w_1 \forall w_2 (R(w_1, w_2) \lor R(w_2, w_1)) \models \exists w_1 R(w_1, w_1)$$ and so by the Completeness Theorem, $$\exists w_1 \forall w_2 (R(w_1, w_2) \lor R(w_2, w_1)) \vdash \exists w_1 R(w_1, w_1).$$ (b) Let M be the structure for L such that $|M| = \{0,1\}$, $R^M = \{\langle 0,1\rangle, \langle 1,0\rangle\}$. Then $M \models R(0,1)$ and $M \models R(1,0)$ so $M \models \exists w_2 R(0,w_2)$ and $M \models \exists w_2 R(1,w_2)$, and hence since $|M| = \{0,1\}$, $M \models \forall w_1 \exists w_2 R(w_1,w_2)$. However since $\langle 0,0\rangle, \langle 1,1\rangle \notin R^M$, $M \nvDash R(0,0)$ and $M \nvDash R(1,1)$ and hence $M \nvDash \exists w_1 R(w_1,w_1)$. This shows that $$\forall w_1 \exists w_2 \, R(w_1, w_2) \not\vDash \exists w_1 \, R(w_1, w_1)$$ and by the Completeness Theorem it follows that $$\forall w_1 \exists w_2 \, R(w_1, w_2) \not\vdash \exists w_1 \, R(w_1, w_1).$$ It is not the case that $R(x_1, x_1) \equiv R(x_2, x_2)$ since let M be the structure with $|M| = \{1, 2\}$ and $R^M = \{\langle 1, 1 \rangle\}$. Then for the assignment $x_1 \mapsto 1$, $x_2 \mapsto 2$ $R(x_1, x_1)$ is true in M but $R(x_2, x_2)$ is not. Hence $R(x_1, x_1) \not\equiv R(x_2, x_2)$. - **A5.** (i)+(ii) \nvDash (iii): Let M be the structure for L such that $|M| = \{0\}$ and $P^M = \{0\}$, $f^M(0) = 0$. Then (i) is true in M since $M \models P(f(0))$, so $M \models P(0) \rightarrow P(f(0))$. Also $M \models$ (ii) since $M \models P(f(0))$, so $M \models \neg P(0) \lor P(f(0))$. However (iii) fails to hold in M since f(0) = 0 and $M \models P(f(0))$ so $M \nvDash \exists w_1 \neg P(f(w_1))$. - (i)+(iii) \nvDash (ii): Let M be the structure for L with $|M| = \{0,1,2\}$ and $P^M = \{1\}$, $f^M(0) = f^M(1) = 1$, f(2) = 2. Then $M \models$ (i) since $M \nvDash P(0)$, $M \nvDash P(2)$ so $M \models P(0) \to P(f(0))$, $M \models P(2) \to P(f(2))$, and $M \models P(f(1))$ so $M \models P(1) \to P(f(1))$. Also $M \models$ (iii) since $M \models \neg P(f(2))$. However $M \nvDash$ (ii) since $M \nvDash P(0)$ and $M \nvDash \neg P(f(0))$ (because f(0) = 1 and $M \models P(1)$). - (ii)+(iii) \nvDash (i): Let M be the structure for L with $|M| = \{0,1\}$ and $P^M = \{0\}$, $f^M(0) = f^M(1) = 1$. Then $M \models P(0)$ and $M \models \neg P(f(1))$ (since $f^M(1) = 1$ and $M \nvDash P(1)$) so $M \models P(0) \lor \neg P(f(0))$ and $M \models P(1) \lor \neg P(f(1))$. Hence $M \models$ (ii). Also $M \models$ (iii) since $M \models \neg P(f(1))$. However $M \models P(0)$ and $M \nvDash P(f(0))$ (since f(0) = 1) so $M \nvDash P(0) \to P(f(0))$ and in turn $M \nvDash$ (i). - **B6.** Let $\theta(x_1, x_2, \dots, x_m) \in FL$ and assume that for all $\phi(x_1, x_2, \dots, x_k) \in FL$ with $|\phi| < |\theta|$ and all $r_1, r_2, \dots, r_k \in |M|$, $$M \models \phi(r_1, r_2, \dots, r_k) \iff M \models \phi(q(r_1), q(r_2), \dots, q(r_k))$$ (6) There are several cases to consider: $$\theta = P(x_i)$$ for some i. In this case if $M \models P(n_1)$ then $n_1 \in P^M$ so $q(n_1) = 1 \in P^M$ and $M \models P(q(n_1))$, whilst if $M \nvDash P(n_1)$ then $n_1 \notin P^M$ so $q(n_1) = 0 \notin P^M$ and $M \nvDash P(q(n_1))$. Combining these then, $$M \models P(n_1) \iff M \models P(q(n_1)),$$ as required in this case. $$\frac{\theta(x_1,\ldots,x_n) = (\phi(x_1,\ldots,x_m) \wedge \psi(x_1,\ldots,x_m))}{\text{In this case } |\phi|,|\psi| < |\theta| \text{ and}}$$ $$M \models \theta(n_1, \dots, n_m) \iff M \models \phi(n_1, \dots, n_m) \text{ and } M \models \psi(n_1, \dots, n_m)$$ $\iff M \models \phi(q(n_1), \dots, q(n_m)) \text{ and } M \models \psi(q(n_1), \dots, q(n_m)),$ by the Inductive Hypothesis, $$\iff M \models \phi(q(n_1), \dots, q(n_m)) \land \psi(q(n_1), \dots, q(n_m))$$ $$\iff M \models \theta(q(n_1), \dots, q(n_m)).$$ The cases for the other connectives are exactly analogous. $$\theta(x_1,\ldots,x_m) = \exists w_j \, \phi(x_1,\ldots,x_m,w_j/x_{m+1})$$ (where, purely to simplify the notation, we have assumed that it is the variable x_{m+1} that is substituted by w_i) In this case $|\phi(x_1,\ldots,x_{m+1})|<|\theta(x_1,\ldots,x_m)|$ and $$M \models \theta(n_1, \dots, n_m) \Rightarrow \exists n_{m+1} \in |M|, M \models \phi(n_1, \dots, n_m, n_{m+1})$$ $$\Rightarrow M \models \phi(q(n_1), \dots, q(n_m), q(n_{m+1}))$$ by the Inductive Hypothesis, $$\Rightarrow M \models \exists w_j \, \phi(q(n_1), \dots, q(n_m), w_j)$$ $$\Rightarrow M \models \theta(q(n_1), \dots, q(n_m)),$$ and in the other direction $$M \models \theta(q(n_1), \dots, q(n_m)) \Rightarrow \exists k \in |M|, M \models \phi(q(n_1), \dots, q(n_m), k)$$ $$\Rightarrow M \models \phi(qq(n_1), \dots, qq(n_m), q(k))$$ by the Inductive Hypothesis, $$\Rightarrow M \models \phi(q(n_1), \dots, q(n_m), q(k)),$$ since $qq(n) = q(n)$ for $n \in |M|$, $$\Rightarrow M \models \phi(n_1), \dots, n_m, k)$$ by the Inductive Hypothesis, $$\Rightarrow M \models \theta(n_1, \dots, n_m).$$ The case for \forall is directly similar. **B7.** (i) A formal proof of Eq, $\forall w_1 c = w_1 \vdash P(c) \rightarrow \forall w_1 P(w_1)$: 1 $$Eq, P(c), \forall w_1 c = w_1 \mid \forall w_1 c = w_1$$ REF 2 $Eq, P(c), \forall w_1 c = w_1 \mid c = x_1$ $\forall O, 1$ 3 $$Eq, P(c), \forall w_1 c = w_1 | \forall w_1, w_2(w_1 = w_2 \to (P(w_1) \to P(w_2)))$$ Eq4 4 $$Eq, P(c), \forall w_1 c = w_1 | \forall w_2 (c = w_2 \to (P(c) \to P(w_2)))$$ $\forall O, 3$ 5 $$Eq, P(c), \forall w_1 c = w_1 \mid (c = x_1 \to (P(c) \to P(x_1)))$$ $\forall O, 4$ 6 $$Eq, P(c), \forall w_1 c = w_1 \mid (P(c) \to P(x_1))$$ MP, 2, 5 7 $$Eq, P(c), \forall w_1 c = w_1 \mid P(c)$$ REF 8 $$Eq, P(c), \forall w_1 c = w_1 | P(x_1)$$ MP, 6, 7 9 $$Eq, P(c), \forall w_1 c = w_1 | \forall w_1 P(w_1)$$ $\forall I, 8$ 10 $$Eq, \forall w_1 c = w_1 \mid (P(c) \to \forall w_1 P(w_1))$$ IMR, 9 (ii) A formal proof of $\exists w_1 P(w_1) \vdash \exists w_1 \exists w_2 (P(w_1) \land P(w_2)) :$ 1 $$P(x_1), P(x_2) | P(x_1)$$ REF 2 $$P(x_1), P(x_2) | P(x_2)$$ REF 3 $$P(x_1), P(x_2) | (P(x_1) \wedge P(x_2))$$ REF 4 $$P(x_1), P(x_2) \mid \exists w_2 (P(x_1) \land P(w_2))$$ $\exists I, 3$ 5 $$P(x_1), P(x_2) \mid \exists w_1 \exists w_2 (P(x_1) \land P(w_2))$$ $\exists I, 4$ 6 $$P(x_1), \exists w_1 P(w_1) \mid \exists w_1 \exists w_2 (P(x_1) \land P(w_2)) \quad \exists O, 5$$ 7 $$\exists w_1 P(w_1) \mid \exists w_1 \exists w_2 (P(x_1) \land P(w_2))$$ $\exists O, 6$ [Notice that on the last line the repetition of $\exists w_1 P(w_1)$ disappears because the left hand side of a sequent is actually a set!] **B8.** The Compactness Theorem: For $\Gamma \subseteq FL$, Γ is satisfiable in a structure for L iff every finite subset of Γ is satisfiable in a structure for L. Assume on the contrary that such a sentence θ did exist and consider the set of sentences of L: $$\Gamma = \{\theta\} \cup \{ \neg \exists w_1, \dots, w_n \forall w_{n+1}, w_{n+2} \bigvee_{i=1}^n T(w_{n+1}, w_i, w_{n+2}) \mid n \in \mathbb{N}^+ \}.$$ We first show that every finite subset of Γ is satisfiable. Let $\Delta \subseteq \Gamma$ be finite. So there is an $m \in \mathbb{N}^+$ such that if $$\neg \exists w_1, \dots, w_n \forall w_{n+1}, w_{n+2} \bigvee_{i=1}^n T(w_{n+1}, w_i, w_{n+2})$$ appears in Δ then $n \leq m$. Let K be the finite structure for L with $|K| = \{1, 2, \dots, m, m+1\}$ and $$T^K = \{ \langle i, j, j \rangle \mid 1 < i, j < m + 1 \}.$$ Clearly K is finitely separated, by the set $A = \{1, 2, ..., m+1\}$, and indeed this is the only set which effects the separation since for each $1 \le j \le m+1$ the only n for which $K \models T(j, n, j)$ is j itself. Hence $K \models \theta$ and $$K \models \neg \exists w_1, \dots, w_n \forall w_{n+1}, w_{n+2} \bigvee_{i=1}^n T(w_{n+1}, w_i, w_{n+2})$$ for each $n \leq m$. So $K \models \Delta$ and Δ is satisfiable. By the Compactness Theorem then Γ has a model, M say. Since $M \models \theta$, M is finitely separated, by $A = \{a_1, a_2, \dots, a_n\} \subseteq |M|$ say. Then $$M \models \forall w_{n+1}, w_{n+2} \bigvee_{i=1}^{n} T(w_{n+1}, a_i, w_{n+2})$$ SO $$M \models \exists w_1, \dots, w_n \forall w_{n+1}, w_{n+2} \bigvee_{i=1}^n T(w_{n+1}, w_i, w_{n+2}).$$ But this is a contradiction since $M \models \Gamma$ and $$\neg \exists w_1, \dots, w_n \forall w_{n+1}, w_{n+2} \bigvee_{i=1}^n T(w_{n+1}, w_i, w_{n+2}) \in \Gamma.$$ Hence no such θ can exist.