
MATH43001/63001, January 2013 Exam, Solutions1

A1. (i) f(w1) /∈ TL since this word contains a bound variable (w1) and we can prove by
induction on |t| that no term t of L can contain a bound variable. [Not necessary to give the
proof but for the record: Clearly true if t is a constant or free variable xi and if t = f(t1) and
no bound variable occurs in t1 then none will occur in t either.]

(ii) f)x1(/∈ TL since no term can end with (. [Not necessary to give the proof but for the
record: Clearly true if t is a free variable xi and if t = f(t1) then t ends in ), so not in (. Hence
the assertion is true for all t ∈ TL by induction on |t|.]

(iii) ∃w2(R(w2, x1) → ∀w1R(w1, x1)) ∈ FL since R(x2, x1) ∈ FL by L1, so ∀w1R(w1, x1) ∈ FL
by L3. By L2 then (R(x2, x1) → ∀w1R(w1, x1)) ∈ FL and finally by L3 ∃w2((R(w2, x1) →
∀w1R(w1, x1)) ∈ FL.

(iv) (¬∃w1R(x1, x1)) /∈ FL since we can prove by induction on |θ| for θ ∈ FL that the number
of left round brackets ‘(’ in θ equals the number of relation, function and binary connective
(i.e. ∧,∨,→) symbols occurring in θ and this is not the case for (¬∃w1R(x1, x1)). [Again it is
not necessary to prove this but, for the record, such a proof could go as follows: We first prove
it for terms t ∈ TL (where of course there are are no relation symbols nor connectives) by
induction on |t|. Moving on to formulae it is clearly true for R(t1, t2) since it is true for t1, t2
and along with R we introduce one new ‘(’. Finally, by inspection we can see that if it holds
for φ, ψ ∈ FL then it holds for ¬φ, (φ∧ψ), (φ∨ψ), (φ→ ψ), ∃wj ψ(wj/xi) and ∀wj ψ(wj/xi)
(assuming here of course that wj does not already occur in ψ).]

(v) M |= ∀w1R(w1, f(w1)) ⇐⇒ for all n ∈ N+, 〈n, fM(n)〉 ∈ RM

⇐⇒ for all n ∈ N+, n|fM(n)
⇐⇒ for all n ∈ N+, n|n+ 1

which is not true, for example 2 ∤ (2 + 1). [In your exam script it is enough to simply give an
answer ‘true’/‘false’, similarly with parts (vi),(vii).]

(vi) M |= ∀w1∃w2(R(w1, w2) ∧ ¬R(w2 ∧ w1))
⇐⇒ for each n ∈ N+ there is an m ∈ N+ such that 〈n,m〉 ∈ RM and

〈m,n〉 /∈ RM

⇐⇒ for each n ∈ N+ there is an m ∈ N+ such that n|m and m ∤ n

which is true since for each n ∈ N+, n|2n but 2n ∤ n.

(vii) M |= ∃w1∀w2∀w3 (R(w2, f(w1)) ∧ R(w3, f(w1))) → (R(w2, w3) ∨ R(w3, w2))

⇐⇒ there is n ∈ N+ such that for any m, k ∈ N+ if 〈m, fM(n)〉,
〈k, fM(n)〉 ∈ RM then either 〈m, k〉 ∈ RM or 〈k,m〉 ∈ RM

⇐⇒ there is n ∈ N+ such that for any m, k ∈ N+ if m|(n+ 1) and
k|(n+ 1) then either m|k or k|m.

which is true since for n = 1 it is the case that for any two divisors m, k of 1 + 1 = 2, either
m|k or k|m.

1These solutions are more detailed than I would expect in the exam. That’s because I want them to also
serve an educational purpose when given with ‘last year’s paper’ next year(!)
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θ1(x1) = ∀w1R(x1, w1)

θ2(x1, x2) = (R(x1, x2) ∧R(x2, x1))

θ3(x1) = ∃w2 (∀w1R(w2, w1) ∧ ¬R(f(w2), x1))

θ4(x1) = ∃w2 (∀w1R(w2, w1) ∧ ∀w3 (R(w3, x1) → (R(w3, w2) ∨ R(f(w2), w3))))

φ = ∀w1R(w1, f(w1)) (since always n ≤ n+ 1, so this holds in K, but by (v) does not hold in
M).

A2. A suitable logical equivalent (there are many possibilities here) in PNF is

∃w3∃w1∀w2 (R(w1, w2) → R(w3, w3)).

It is enough to just write this down for the marks but for the record we could argue: Since
∃w1R(w1, w1) ≡ ∃w3R(w3, w3), by the ‘Useful Equivalents’ (UEs for short),

(∀w1∃w2R(w1, w2) → ∃w1R(w1, w1)) ≡ (∀w1∃w2R(w1, w2) → ∃w3R(w3, w3)). (1)

Again by the UEs,

(∀w1∃w2R(w1, w2) → R(x3, x3)) ≡ ∃w1 (∃w2R(w1, w2) → R(x3, x3)) (2)

(∃w2R(x1, w2) → R(x3, x3)) ≡ ∀w2 (R(x1, w2) → R(x3, x3)). (3)

From (2),(3) resp. and the UEs,

∃w3 (∀w1∃w2R(w1, w2) → R(w3, w3)) ≡ ∃w3∃w1 (∃w2R(w1, w2) → R(w3, w3)) (4)

∃w3∃w1 (∃w2R(w1, w2) → R(w3, w3)) ≡ ∃w3∃w1∀w2 (R(w1, w2) → R(w3, w3)) (5)

Putting together (1),(4),(5) with the transitivity of ≡ gives the stated PNF.

Clearly we could have altered the order in which we ‘moved out’ the quantifiers here to give
logically equivalent, but formally different, PNF’s, for example

∃w3∃w1∀w2 (R(w1, w2) → R(w3, w3)) ≡ ∃w1∀w2∃w3 (R(w1, w2) → R(w3, w3)).

A3. A (formal) proof (in PC) is a sequence of sequents

Γ1 | φ1, Γ2 | φ2 . . . ,Γm | φm

where the Γi are finite subsets of FL, the φi ∈ FL and for i = 1, 2, . . . , m, either Γi | φi is an
instance of REF or there are some j1, j2, . . . , js < i such that

Γj1 | φj1, Γj2 | φj2, . . . ,Γjs | φjs

Γi | φi

is an instance of one of the rules of proof.

A formal proof of ∃w1 P (w1), ∀w1 (P (w1) → Q(w1)) ⊢ ∃w1Q(w1) :

1 P (x1), ∀w1 (P (w1) → Q(w1)) |P (x1) REF

2 P (x1), ∀w1 (P (w1) → Q(w1)) | ∀w1 (P (w1) → Q(w1)) REF

3 P (x1), ∀w1 (P (w1) → Q(w1)) | (P (x1) → Q(x1)) ∀O, 2

4 P (x1), ∀w1 (P (w1) → Q(w1)) |Q(x1) MP, 1, 3

5 P (x1), ∀w1 (P (w1) → Q(w1)) | ∃w1Q(x1) ∃I, 4

6 ∃w1 P (w1), ∀w1 (P (w1) → Q(w1)) | ∃w1Q(x1) ∃O, 5

2



A4. Completeness Theorem: For Γ ⊆ FL and θ ∈ FL, Γ ⊢ θ ⇐⇒ Γ |= θ.

(a) Let M be a structure for L and suppose that

M |= ∃w1∀w2 (R(w1, w2) ∨R(w2, w1)),

so for some a ∈ |M |,
M |= ∀w2 (R(a, w2) ∨ R(w2, a)),

equivalently for all b ∈ |M |, M |= R(a, b) ∨ R(b, a). Taking b = a here gives M |= R(a, a) ∨
R(a, a) so M |= R(a, a) and M |= ∃w1R(w1, w1). This shows that

∃w1∀w2 (R(w1, w2) ∨ R(w2, w1)) |= ∃w1R(w1, w1)

and so by the Completeness Theorem,

∃w1∀w2 (R(w1, w2) ∨R(w2, w1)) ⊢ ∃w1R(w1, w1).

(b) Let M be the structure for L such that |M | = {0, 1}, RM = { 〈0, 1〉, 〈1, 0〉}. Then M |=
R(0, 1) and M |= R(1, 0) so M |= ∃w2R(0, w2) and M |= ∃w2R(1, w2), and hence since
|M | = {0, 1}, M |= ∀w1∃w2R(w1, w2). However since 〈0, 0〉, 〈1, 1〉 /∈ RM , M 2 R(0, 0) and
M 2 R(1, 1) and hence M 2 ∃w1R(w1, w1). This shows that

∀w1∃w2R(w1, w2) 2 ∃w1R(w1, w1)

and by the Completeness Theorem it follows that

∀w1∃w2R(w1, w2) 0 ∃w1R(w1, w1).

It is not the case that R(x1, x1) ≡ R(x2, x2) since letM be the structure with |M | = {1, 2} and
RM = {〈1, 1〉}. Then for the assignment x1 7→ 1, x2 7→ 2 R(x1, x1) is true in M but R(x2, x2)
is not. Hence R(x1, x1) ≡/ R(x2, x2).

A5. (i)+(ii) 2 (iii): Let M be the structure for L such that |M | = {0} and PM = {0},
fM(0) = 0. Then (i) is true in M since M |= P (f(0)), so M |= P (0) → P (f(0)). Also M |=
(ii) since M |= P (f(0)), so M |= ¬P (0) ∨ P (f(0)). However (iii) fails to hold in M since
f(0) = 0 and M |= P (f(0)) so M 2 ∃w1 ¬P (f(w1)).

(i)+(iii) 2 (ii): Let M be the structure for L with |M | = {0, 1, 2} and PM = {1}, fM(0) =
fM(1) = 1, f(2) = 2. Then M |= (i) since M 2 P (0), M 2 P (2) so M |= P (0) → P (f(0)),
M |= P (2) → P (f(2)), and M |= P (f(1)) so M |= P (1) → P (f(1)). Also M |= (iii) since
M |= ¬P (f(2)). However M 2 (ii) since M 2 P (0) and M 2 ¬P (f(0)) (because f(0) = 1 and
M |= P (1)).

(ii)+(iii) 2 (i): Let M be the structure for L with |M | = {0, 1} and PM = {0}, fM(0) =
fM(1) = 1. Then M |= P (0) and M |= ¬P (f(1)) (since fM(1) = 1 and M 2 P (1)) so
M |= P (0) ∨ ¬P (f(0)) and M |= P (1) ∨ ¬P (f(1)). Hence M |= (ii). Also M |= (iii) since
M |= ¬P (f(1)). However M |= P (0) and M 2 P (f(0)) (since f(0) = 1) so M 2 P (0) →
P (f(0)) and in turn M 2 (i).

B6. Let θ(x1, x2, . . . , xm) ∈ FL and assume that for all φ(x1, x2, . . . , xk) ∈ FL with |φ| < |θ|
and all r1, r2, . . . , rk ∈ |M |,

M |= φ(r1, r2, . . . , rk) ⇐⇒ M |= φ(q(r1), q(r2), . . . , q(rk)) (6)
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There are several cases to consider:

θ = P (xi) for some i.

In this case if M |= P (n1) then n1 ∈ PM so q(n1) = 1 ∈ PM and M |= P (q(n1)), whilst if
M 2 P (n1) then n1 /∈ PM so q(n1) = 0 /∈ PM and M 2 P (q(n1)). Combining these then,

M |= P (n1) ⇐⇒ M |= P (q(n1)),

as required in this case.

θ(x1, . . . , xn) = (φ(x1, . . . , xm) ∧ ψ(x1, . . . , xm))

In this case |φ|, |ψ| < |θ| and

M |= θ(n1, . . . , nm) ⇐⇒ M |= φ(n1, . . . , nm) and M |= ψ(n1, . . . , nm)

⇐⇒ M |= φ(q(n1), . . . , q(nm)) and M |= ψ(q(n1), . . . , q(nm)),

by the Inductive Hypothesis,

⇐⇒ M |= φ(q(n1), . . . , q(nm)) ∧ ψ(q(n1), . . . , q(nm))

⇐⇒ M |= θ(q(n1), . . . , q(nm)).

The cases for the other connectives are exactly analogous.

θ(x1, . . . , xm) = ∃wj φ(x1, . . . , xm, wj/xm+1)

(where, purely to simplify the notation, we have assumed that it is the variable xm+1 that is
substituted by wj)
In this case |φ(x1, . . . , xm+1)| < |θ(x1, . . . , xm)| and

M |= θ(n1, . . . , nm) ⇒ ∃nm+1 ∈ |M |,M |= φ(n1, . . . , nm, nm+1)

⇒ M |= φ(q(n1), . . . , q(nm), q(nm+1))

by the Inductive Hypothesis,

⇒ M |= ∃wj φ(q(n1), . . . , q(nm), wj)

⇒ M |= θ(q(n1), . . . , q(nm)),

and in the other direction

M |= θ(q(n1), . . . , q(nm)) ⇒ ∃k ∈ |M |,M |= φ(q(n1), . . . , q(nm), k)

⇒ M |= φ(qq(n1), . . . , qq(nm), q(k))

by the Inductive Hypothesis,

⇒ M |= φ(q(n1), . . . , q(nm), q(k)),

since qq(n) = q(n) for n ∈ |M |,

⇒ M |= φ(n1), . . . , nm, k)

by the Inductive Hypothesis,

⇒ M |= θ(n1, . . . , nm).

The case for ∀ is directly similar.
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B7. (i) A formal proof of Eq, ∀w1 c = w1 ⊢ P (c) → ∀w1 P (w1) :

1 Eq, P (c), ∀w1 c = w1 | ∀w1 c = w1 REF

2 Eq, P (c), ∀w1 c = w1 | c = x1 ∀O, 1

3 Eq, P (c), ∀w1 c = w1 | ∀w1, w2(w1 = w2 → (P (w1) → P (w2))) Eq4

4 Eq, P (c), ∀w1 c = w1 | ∀w2(c = w2 → (P (c) → P (w2))) ∀O, 3

5 Eq, P (c), ∀w1 c = w1 | (c = x1 → (P (c) → P (x1))) ∀O, 4

6 Eq, P (c), ∀w1 c = w1 | (P (c) → P (x1)) MP, 2, 5

7 Eq, P (c), ∀w1 c = w1 |P (c) REF

8 Eq, P (c), ∀w1 c = w1 |P (x1) MP, 6, 7

9 Eq, P (c), ∀w1 c = w1 | ∀w1 P (w1) ∀I, 8

10 Eq, ∀w1 c = w1 | (P (c) → ∀w1 P (w1)) IMR, 9

(ii) A formal proof of ∃w1 P (w1) ⊢ ∃w1∃w2 (P (w1) ∧ P (w2)) :

1 P (x1), P (x2) |P (x1) REF

2 P (x1), P (x2) |P (x2) REF

3 P (x1), P (x2) | (P (x1) ∧ P (x2)) REF

4 P (x1), P (x2) | ∃w2 (P (x1) ∧ P (w2)) ∃I, 3

5 P (x1), P (x2) | ∃w1∃w2 (P (x1) ∧ P (w2)) ∃I, 4

6 P (x1), ∃w1 P (w1) | ∃w1∃w2 (P (x1) ∧ P (w2)) ∃O, 5

7 ∃w1 P (w1) | ∃w1∃w2 (P (x1) ∧ P (w2)) ∃O, 6

[Notice that on the last line the repetition of ∃w1 P (w1) disappears because the left hand side
of a sequent is actually a set!]

B8. The Compactness Theorem: For Γ ⊆ FL, Γ is satisfiable in a structure for L iff every
finite subset of Γ is satisfiable in a structure for L.

Assume on the contrary that such a sentence θ did exist and consider the set of sentences of
L:

Γ = {θ} ∪ {¬∃w1, . . . , wn∀wn+1, wn+2

n∨

i=1

T (wn+1, wi, wn+2) |n ∈ N+ }.

We first show that every finite subset of Γ is satisfiable. Let ∆ ⊆ Γ be finite. So there is an
m ∈ N+ such that if

¬∃w1, . . . , wn∀wn+1, wn+2

n∨

i=1

T (wn+1, wi, wn+2)

appears in ∆ then n ≤ m. Let K be the finite structure for L with |K| = {1, 2, . . . , m,m+ 1}
and

TK = {〈i, j, j〉 | 1 ≤ i, j ≤ m+ 1}.

Clearly K is finitely separated, by the set A = {1, 2, . . . , m+1}, and indeed this is the only set
which effects the separation since for each 1 ≤ j ≤ m+ 1 the only n for which K |= T (j, n, j)
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is j itself. Hence K |= θ and

K |= ¬∃w1, . . . , wn∀wn+1, wn+2

n∨

i=1

T (wn+1, wi, wn+2)

for each n ≤ m. So K |= ∆ and ∆ is satisfiable.

By the Compactness Theorem then Γ has a model, M say. Since M |= θ, M is finitely
separated, by A = {a1, a2, . . . , an} ⊆ |M | say. Then

M |= ∀wn+1, wn+2

n∨

i=1

T (wn+1, ai, wn+2)

so

M |= ∃w1, . . . , wn∀wn+1, wn+2

n∨

i=1

T (wn+1, wi, wn+2).

But this is a contradiction since M |= Γ and

¬∃w1, . . . , wn∀wn+1, wn+2

n∨

i=1

T (wn+1, wi, wn+2) ∈ Γ.

Hence no such θ can exist.
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