MATH43001/63001, January 2013 Exam, Solutions!

Al. (i) f(wy) ¢ TL since this word contains a bound variable (w;) and we can prove by
induction on |t| that no term ¢ of L can contain a bound variable. [Not necessary to give the
proof but for the record: Clearly true if ¢ is a constant or free variable z; and if ¢t = f(¢1) and
no bound variable occurs in ¢; then none will occur in ¢ either.]

(i) f)x1(¢ TL since no term can end with (. [Not necessary to give the proof but for the
record: Clearly true if ¢ is a free variable z; and if ¢ = f(¢;) then ¢ ends in ), so not in (. Hence
the assertion is true for all t € T'L by induction on |¢|.]

(111) Elwg(R(wg, Il) — leR(wl, xl)) € F'L since R(SL’Q, Il) e FL by Ll, so Ywy R(wl, Il) e FL
by L3. By L2 then (R(z2,z1) — Yw; R(wy, 1)) € FL and finally by L3 Jws((R(wa, z1) —
leR(wl, S(Il)) e I'L.

(iv) (=3w; R(x1, 1)) ¢ FL since we can prove by induction on |f| for § € F'L that the number
of left round brackets ‘(” in 6 equals the number of relation, function and binary connective
(i.e. A,V,—) symbols occurring in 6 and this is not the case for (—3w; R(xy, z1)). [Again it is
not necessary to prove this but, for the record, such a proof could go as follows: We first prove
it for terms ¢ € T'L (where of course there are are no relation symbols nor connectives) by
induction on |t|. Moving on to formulae it is clearly true for R(t,t2) since it is true for ¢y, ¢,
and along with R we introduce one new ‘(’. Finally, by inspection we can see that if it holds
for ¢, € FL then it holds for —¢, (¢ AY), (¢ V), (¢ = ¢), Fw; Y(w;/z;) and Yw; Y(w;/x;)
(assuming here of course that w; does not already occur in 1).]

(v) M E Vw, R(wy, f(wy)) <= forallne Nt (n, fM(n)) € RM
< forall n € N*, n|f¥(n)
< foralln e N" njn+1
which is not true, for example 21 (24 1). [In your exam script it is enough to simply give an
answer ‘true’/‘false’, similarly with parts (vi),(vii).]
(vi) M = Vw; Fwe(R(wy, we) A = R(wa A wy))
<= for each n € NT there is an m € N* such that (n,m) € RM and
(m,n) ¢ RM
<= for each n € N7 there is an m € NT such that n|m and m { n

which is true since for each n € Nt n|2n but 2n t n.
(vii) M | JwVweVws (R(ws, f(wy)) A R(ws, f(wq))) = (R(wa, w3) V R(ws, ws))
<= there is n € NT such that for any m, k € N* if (m, fM(n)),
(k, fM(n)) € RM then either (m,k) € RM or (k,m) € RM
<= there is n € N* such that for any m, k € NT if m|(n + 1) and
k|(n + 1) then either m|k or k|m.

which is true since for n = 1 it is the case that for any two divisors m, k of 1 + 1 = 2, either
m|k or k|m.

!These solutions are more detailed than I would expect in the exam. That’s because I want them to also
serve an educational purpose when given with ‘last year’s paper’ next year(!)



01(z1) = Ywy R(xy,wy)

x1,Ta) = (R(x1,x9) AN R(x9, 1))

1) = Jws (Ywy R(ws, wi) A =R(f(ws),x1))

04(z1) = Fwz (Ywr R(w2, w1) A Vws (R(ws, x1) = (R(ws, wa) V R(f(w2), ws3))))
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¢ = VYw; R(wy, f(wy)) (since always n < n+ 1, so this holds in K, but by (v) does not hold in
A2. A suitable logical equivalent (there are many possibilities here) in PNF is
ElngIwNwQ (R(wl, ’LUQ) — R(wg, 'LUg))

It is enough to just write this down for the marks but for the record we could argue: Since
Jwy R(wy, wy) = JwsR(ws, ws), by the ‘Useful Equivalents’ (UEs for short),

(VwyFws R(wy, we) — Jwi R(wy, wr)) = (Vw,Fws R(wy, wy) — JwsR(ws, w3)). (1)
Again by the UEs,
(leflwg R(wl, wg) — R(l’g, xg)) = E|w1 (E'U)Q R(wl, U)Q) — R(I3, 1’3)) (2)
(Elwg R([L’l, wg) — R([L’g, 1'3)) = ‘v’wg (R([L’l, wg) — R([L’g, 1’3)) (3)
From (2),(3) resp. and the UEs,
Elwg (leflwg R(wl, wg) — R(U)3, wg)) = E|w3§|w1 (Elwg R(wl, wg) — R(U)3, wg)) (4)
E|w3§|w1 (Elwg R(wl, wg) — R(U)3, wg)) = Elnglewg (R(wl, wg) — R(U)3, wg)) (5)
Putting together (1),(4),(5) with the transitivity of = gives the stated PNF.

Clearly we could have altered the order in which we ‘moved out’ the quantifiers here to give
logically equivalent, but formally different, PNF’s, for example

FwsFw,Vws (R(wy, we) = R(ws, ws)) = Jw,VwyTws (R(wy, we) — R(ws, ws)).

A3. A (formal) proof (in PC) is a sequence of sequents

[yl ¢n, Dol o, | ém
where the I'; are finite subsets of F'L, the ¢; € FIL and for ¢ = 1,2,...,m, either I'; | ¢; is an

instance of REF or there are some ji, jo, ..., js < ¢ such that
Fjl ‘ ¢j17 sz ‘ ¢j27 s 7Fjs ¢js
Li| ¢

is an instance of one of the rules of proof.

A formal proof of Jw; P(w,), Yw; (P(wy) — Q(wy)) F Jw; Q(wy) :

1 P(x1), Ywy (P(wy) = Q(w1)) | P(x1) REF

2 P(zy), Yw (P(wy) = Q(wy)) | Vwy (P(wy) = Q(wy)) REF

3 P(x1), Ywr (P(wi) = Q(w1)) | (P(x1) — Q(z1)) VO, 2

4 P(xy1), Ywy (P(wy) = Q(wy)) | Q(x1) MP, 1,3
5  P(zy), Yw (P(wy) = Q(wy)) | Fwy Q1) a1, 4

6 Jw, P(wy), Ywy (P(wy) = Q(wy)) | Fwy Q(xq) 30, 5
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A4. Completeness Theorem: For ' C FLand 0 € FL,I'+60 <«— T 6.
(a) Let M be a structure for L and suppose that

M ): Elwl‘v’wg (R(wl, ’LUQ) \% R(’LUQ, wl)),
so for some a € | M|,
M ’: Vw2 (R(CL, U)Q) V R(wg, CL)),
equivalently for all b € |M|, M = R(a,b) V R(b,a). Taking b = a here gives M |= R(a,a) V
R(a,a) so M | R(a,a) and M = Jw; R(wy,w;). This shows that
E'U)1VU)2 (R(wl, U)Q) V R(wg, U)1>> ): E|w1 R(wl, wl)

and so by the Completeness Theorem,

levwg (R(wl, wg) V R(wg, wl)) H Elwl R(wl, wl).

(b) Let M be the structure for L such that |[M| = {0,1}, RM = {(0,1),(1,0)}. Then M =
R(0,1) and M = R(1,0) so M |E Jws R(0,ws) and M = Jwy R(1,ws), and hence since
|M| = {0,1}, M = Yw;Jwy R(wy,ws). However since (0,0),(1,1) ¢ RM M ¥ R(0,0) and
M ¥ R(1,1) and hence M ¥ Jw; R(wy,w;). This shows that

leflwg R(wl, wg) ¥ E|w1 R(wl, U)l)
and by the Completeness Theorem it follows that

\V/’LU1£|’LU2 R(wl, wg) ¥ Elwl R(wl, wl).

It is not the case that R(z1,x1) = R(xq,x2) since let M be the structure with |M| = {1, 2} and
RM = {(1,1)}. Then for the assignment z; + 1, 25 — 2 R(zy,2;) is true in M but R(xs, x)
is not. Hence R(x1,21) # R(z2,x2).

A5.  (i)+(ii) ¥ (iii): Let M be the structure for L such that |M| = {0} and PM = {0},
fM(0) = 0. Then (i) is true in M since M | P(f(0)), so M | P(0) — P(f(0)). Also M =
(i) since M = P(f(0)), so M = —-P(0) VvV P(f(0)). However (iii) fails to hold in M since
f(0) =0and M = P(f(0)) so M ¥ Jw; ~P(f(wy)).

(i)-+(iii) ¥ (ii): Let M be the structure for L with |[M| = {0,1,2} and PY = {1}, fM(0) =

=1, f(2) = 2. Then M [= (i) since M ¥ P(0), M ¥ P(2) so M = P(0) — P(f(0)),
P(2) — P(f(2)), and M = P(f(1)) so M = P(1) — P(f(1)). Also M = (iii) since
J(D(J;(Q)) However M ¥ (ii) since M ¥ P(0) and M ¥ =P(f(0)) (because f(0) =1 and
i)

mTTmTes

P(1)).

¥ (i): Let M be the structure for L with |M| = {0,1} and PM = {0}, fM(0) =
1. Then M | P(0) and M E —=P(f(1)) (since fM(1) = 1 and M ¥ P(1)) so

vV =P(f(0)) and M = P(1) vV =P(f(1)). Hence M = (ii). Also M |= (iii) since

{i(l)) Howev;r(]\)4 E P(0) and M ¥ P(f(0)) (since f(0) = 1) so M ¥ P(0) —
in turn M

1)11 )
= P(0)
= P
(F0) a

B6. Let 0(xq,x2,...,2,) € FL and assume that for all ¢(x1, 29, ..., 2,) € FL with || < |0
and all 7,79, ..., 1 € | M|,

M ):¢(T1,T2,...,Tk) — M 'Zgb(Q(rl)aQ(T?)a"'»(J(rk)) (6)
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There are several cases to consider:

0 = P(x;) for some i.
In this case if M = P(n;) then ny € PM s0 q(n;) =1 € PM and M = P(q(ny)), whilst if
M ¥ P(n;) then n; ¢ PM so g(n1) =0 ¢ PM and M ¥ P(q(n;)). Combining these then,

M | P(ny) <= M [ P(q(n)),

as required in this case.

O(x1,...,xn) = (O(x1,. .., Tm) ANU(T1, ... X))
In this case |¢], || < |0] and

M E0(nyg,...,ny) M E ¢(ny,...,ny) and M = Y(ng, ..., ny)

M ’: ¢(q(n1)v R q(nm)) and M ): w(Q(nl)v s 7q(nm))7
by the Inductive Hypothesis,

M ): ¢(Q(nl)> R q(nm)) N w(Q(nl)> R q(nm))
M E0(q(n1),...,q(nm)).

The cases for the other connectives are exactly analogous.

1T 10

O(z1, ..., Tm) = 3w p(x1, ..., Ty, Wi/ Tintr)

(where, purely to simplify the notation, we have assumed that it is the variable x,,.; that is
substituted by w,)

In this case |¢(z1, ..., Tme1)| < |0(z1,...,2,)| and

MEO(ng,...,ny) = gy € M|, M E o(ni, ... Ny Nns1)

= M ): ¢(q(n1)7 R Q(nm), q(nm—l-l))
by the Inductive Hypothesis,

M ): EhUj Cb(CI(nl)a ceey Q(nM)’ wj)
M = 0(q(n1), ..., q(nm)),

4y

and in the other direction

M 0(q(n1), ... q(nm)) = Fk € [M|, M = ¢(q(n), - .., q(nn), k)

= M= ¢(qq(n), - - -, qq(nm), q(k))
by the Inductive Hypothesis,

= M E ¢(q(n),....q(nn), q(k)),
since gq(n) = q(n) for n € | M|,
= MEo(ny),...,nm, k)
by the Inductive Hypothesis,
= MEOn,...,ng).

The case for V is directly similar.



B7. (i) A formal proof of Eq, Yw;,c=w; F P(c) = Yw; P(wy) :

1 Eq, P(c), Ywic=w; |Ywic=w REF

2 Eq, P(c), Ywic=w;|c=x; VO, 1

3 Eq, P(c), Ywc = w; |Ywy, we(wy = we — (P(wy) = P(ws))) Eq4

4 Eq, P(c), Yw, ¢ = wy |Vws(c = wy — (P(c) = P(ws))) vO, 3

5 Eq, P(c), Ywrc=w; | (c =121 = (P(c) = P(x1))) VO, 4

6 Eq, P(c), Ywyc=w; | (P(c) —» P(x1)) MP, 2.5
7 Eq, P(c), Ywyc=w|P(c) REF

8 Eq, P(c), Ywyc=wy | P(z1) MP, 6,7
9 Eq, P(c), Ywy ¢ = wy |Ywy P(w;) VI, 8

10 Eq, Ywyc=w | (P(c) = Yw, P(wy)) IMR, 9
(ii) A formal proof of Jw; P(wy) b JwiFws (P(wyi) A P(ws)) :

1 P(z1), P(zz)| P(21) REF

2 P(xq), P(x9)| P(x2) REF

3 P(z1), P(xq) | (P(x1) A P(xq)) REF

4 P(z1), P(xs)|Jwy (P(z1) A P(ws)) a1, 3

5 P(z1), P(x9)|JwiTwy (P(z1) A P(ws)) a1, 4

6 P(xq), Jw; P(wy) | JwFwy (P(x1) A P(wy)) 30,5

7 Jwy P(wy) | JwyFwy (P(x1) A P(w,)) 30, 6

[Notice that on the last line the repetition of Jw; P(w,) disappears because the left hand side
of a sequent is actually a set!]

B8. The Compactness Theorem: For I' C F'L, T" is satisfiable in a structure for L iff every
finite subset of I' is satisfiable in a structure for L.

Assume on the contrary that such a sentence 6 did exist and consider the set of sentences of
L: .
['= {9} U { —E|w1, Ce ,anwnH, Wn4-2 \/ T(wn+1, w;, wn+2) | n e N+ }
i=1
We first show that every finite subset of I' is satisfiable. Let A C I" be finite. So there is an
m € Nt such that if

n

—Jwy, .., W VW1, Wi \/ T (Wpi1, Wi, Wyy2)
i=1

appears in A then n < m. Let K be the finite structure for L with |K|={1,2,...,m,m+ 1}
and
TF = {(i,4,)) |1 <i,5 <m+ 1},

Clearly K is finitely separated, by the set A = {1,2,...,m+1}, and indeed this is the only set
which effects the separation since for each 1 < j < m + 1 the only n for which K = T'(j,n, j)



is j itself. Hence K = 0 and

n

K ): _E|’w1, e ,anwnH, Wn+2 \/ T(wnH, Wy, wn+2)
=1

for each n < m. So K = A and A is satisfiable.

By the Compactness Theorem then I' has a model, M say. Since M | 6, M is finitely
separated, by A = {ay,aq,...,a,} C |M| say. Then

n
M ): VWr 41, Wnyo \/ T(wn+17 Gy, wn+2)

1=1

SO
n

M ’: E'U)l, Ce ,anwnH, Wn+2 \/ T(wn+1, Wi, wn+2).

i=1

But this is a contradiction since M = T' and

n
—Elwl, ce ,anwnH, Wp+2 \/ T(wn+1, W, wn+2) erl.

i=1

Hence no such 6 can exist.



