UNIVERSITY OF MANCHESTER

PREDICATE LOGIC

17th January 2011
9.45 – 12.15

Answer **ALL** questions in Section A and **TWO** questions in Section B.

A list of axioms and rules of proof is appended to this examination paper

Calculators may be used but only if they cannot store text.
A1. Let the language L have a binary relation symbol R and binary function symbol f. Which of the following are terms of L? You should justify your answers.

(i) $f(x_1, f(x_1, x_2))$

(ii) $f((f(x_1, x_2), x_1))$

Which of the following are formulae of L? You should justify your answers.

(iii) $\forall w_1 \neg R(w_1, x_1)$

(iv) $\forall w_1 \neg R(w_2, x_1)$

Let M be the structure for L with $|M| = \mathbb{N}^+ = \{1, 2, 3, \ldots\}$, $f^M(n, m) = nm$,

$$R^M = \{ \langle n, m \rangle \in |M|^2 \mid n < m \}.$$

Which of the following sentences of L are true in M?

(v) $\forall w_1 \forall w_2 (R(w_1, w_2) \rightarrow R(w_2, w_1))$

(vi) $\exists w_1 \forall w_2 \neg R(w_2, f(w_1, w_2))$

(vii) $\forall w_1 (R(w_1, f(w_1, w_1)) \rightarrow \forall w_2 R(w_2, f(w_1, w_2)))$

Find formulae $\theta_1(x_1, x_2), \theta_2(x_1, x_2), \theta_3(x_1, x_2), \theta_4(x_1, x_2)$ of L such that for $n, m \in |M|$, $M \models \theta_1(n, m) \iff n^2 < m$, $M \models \theta_2(n, m) \iff n = m$, $M \models \theta_3(n, m) \iff n + 1 = m$, $M \models \theta_4(n, m) \iff n \text{ divides } m$.

Let K be the structure for L with $|K| = \mathbb{N} = \{0, 1, 2, 3, \ldots\}$, $f^K(n, m) = nm$,

$$R^K = \{ \langle n, m \rangle \in |K|^2 \mid n < m \}.$$

Find a sentence ϕ of L such that $M \models \phi$ and $K \not\models \phi$. [24 marks]

A2. Write down a sentence in Prenex Normal Form logically equivalent to

$$(\exists w_1 P(w_1) \rightarrow \neg \exists w_1 R(w_1)).$$

[4 marks]
A3. Give a formal proof of
\[\exists w_1 \theta(w_1) \rightarrow \phi \vdash \forall w_1 (\theta(w_1) \rightarrow \phi) \]
where \(w_1 \) does not occur in \(\phi \). [8 marks]

A4. State the Completeness Theorem. Using this theorem or otherwise show that

(a) \(\forall w_1 P(w_1) \rightarrow \forall w_1 Q(w_1) \not\vdash \forall w_1 (P(w_1) \rightarrow Q(w_1)) \)
(b) \(\forall w_1 \forall w_2 (P(w_1) \lor Q(w_2)) \vdash \forall w_1 P(w_1) \lor \exists w_2 Q(w_2) \)

where \(P Q \) are unary relation symbols. [10 marks]

A5. Let \(L \) be the language with a single binary relation symbol \(R \). Show that no two of the following sentences of \(L \) logically imply the third:

(i) \(\forall w_1 \exists w_2 R(w_1, w_2) \)
(ii) \(\exists w_1 \forall w_2 \neg R(w_2, w_1) \)
(iii) \(\forall w_1 \forall w_2 (R(w_1, w_2) \rightarrow \exists w_3 (R(w_1, w_3) \land R(w_3, w_2))) \)

[10 marks]
B6. Let L be a relational language and let P and Q be relation symbols of L of the same arity. For any $\phi(\vec{x}) \in FL$ let $\phi^*(\vec{x})$ denote the formula of L which results by replacing P everywhere in $\phi(\vec{x})$ by Q. For M a structure for L let M^* be the structure for L such that $|M^*| = |M|$, $R^M = R^M$ for R a relation symbol of L different from P whilst $P^M = Q^M$. Show that for any $\vec{a} \in |M|,$

$$M \models \phi^*(\vec{a}) \iff M^* \models \phi(\vec{a}).$$

Hence show that if $\theta(\vec{x}) \in FL$ and $\models \theta(\vec{x})$ then $\models \theta^*(\vec{x})$. Is the converse true? You should justify your answer.

[12 marks]

B7. Give a formal proof that

$$\text{EqL}(=), \forall w_1 R(w_1, w_1) \models x_1 = x_2 \rightarrow R(x_1, x_2).$$

[12 marks]

B8. State the Compactness Theorem.

Let L be the language with the single binary relation symbol R. For M a structure for L we say M has a finite cover if there is a finite set $A \subseteq |M|$ such that for each $b \in |M|$ there is an $a \in A$ such that $M \models R(a, b)$. Show that there can be no sentence θ of L such that for any structure M for L,

$$M \models \theta \iff M \text{ has a finite cover}.$$

[12 marks]
The Rules of Proof and Axiom for the Predicate Calculus

And In (AND) \[
\frac{\Gamma \mid \theta, \ \Delta \mid \phi}{\Gamma \cup \Delta \mid \theta \land \phi}
\]

And Out (AO) \[
\frac{\Gamma \mid \theta \land \phi}{\Gamma \mid \theta}, \quad \frac{\Gamma \mid \theta \land \phi}{\Gamma \mid \phi}
\]

Or In (ORR) \[
\frac{\Gamma \mid \theta}{\Gamma \mid \theta \lor \phi}, \quad \frac{\Gamma \mid \theta}{\Gamma \mid \phi \lor \theta}
\]

Disjunction (DIS) \[
\frac{\Gamma, \theta \mid \psi, \ \Delta, \phi \mid \psi}{\Gamma \cup \Delta, \theta \lor \phi \mid \psi}
\]

Implies In (IMR) \[
\frac{\Gamma, \theta \mid \phi}{\Gamma \mid \theta \rightarrow \phi}
\]

Modus Ponens (MP) \[
\frac{\Gamma \mid \theta, \ \Delta \mid \theta \rightarrow \phi}{\Gamma \cup \Delta \mid \phi}
\]

Not In (NIN) \[
\frac{\Gamma, \theta \mid \phi, \ \Delta, \theta \mid \neg \phi}{\Gamma \cup \Delta \mid \neg \theta}
\]

Not Not Out (NNO) \[
\frac{\Gamma \mid \neg \neg \theta}{\Gamma \mid \theta}
\]

Monotonicity (MON) \[
\frac{\Gamma \mid \theta}{\Gamma \cup \Delta \mid \theta}
\]

All In (\(\forall I\)) \[
\frac{\Gamma \mid \theta}{\Gamma \mid \forall w_j \theta(w_j/x_i)}
\] where \(x_i\) does not occur in any formula in \(\Gamma\) and \(w_j\) does not occur in \(\theta\)

All Out (\(\forall O\)) \[
\frac{\Gamma \mid \forall w_j \theta(w_j, \vec{x})}{\Gamma \mid \theta(t(\vec{x}), \vec{x})}
\] for \(t(\vec{x}) \in TL\)

Exists In (\(\exists I\)) \[
\frac{\Gamma \mid \theta}{\Gamma \mid \exists w_j \theta'}
\] where \(\theta'\) is the result of replacing any number of occurrences of the term \(t(\vec{x})\) in \(\theta\) by \(w_j\) and \(w_j\) does not occur in \(\theta\).

Exists Out (\(\exists O\)) \[
\frac{\Gamma, \phi \mid \theta}{\Gamma, \exists w_j \phi(w_j/x_i) \mid \theta}
\] where \(x_i\) does not occur in \(\theta\) nor any formula in \(\Gamma\) and \(w_j\) does not occur in \(\phi\).

REF \[
\Gamma \mid \theta \quad \text{whenever } \theta \in \Gamma.
\]
The Equality Axioms, Eq

Eq1 \(\forall w_1 \, w_1 = w_1 \)

Eq2 \(\forall w_1, w_2 \,(w_1 = w_2 \rightarrow w_2 = w_1) \)

Eq3 \(\forall w_1, w_2, w_3 \,((w_1 = w_2 \land w_2 = w_3) \rightarrow w_1 = w_3) \)

Eq4
\[\forall w_1, \ldots, w_{2r} \left(\left(\bigwedge_{i=1}^{r} w_i = w_{r+i} \right) \rightarrow (R(w_1, w_2, \ldots, w_r) \leftrightarrow R(w_{r+1}, w_{r+2}, \ldots, w_{2r})) \right) \]

for \(R \) an \(r \)-ary relation symbol of \(L \).

Eq5
\[\forall w_1, \ldots, w_{2r} \left(\left(\bigwedge_{i=1}^{r} w_i = w_{n+i} \right) \rightarrow f(w_1, w_2, \ldots, w_r) = f(w_{r+1}, w_{r+2}, \ldots, w_{2r}) \right) \]

for \(f \) an \(r \)-ary function symbol of \(L \).

Eq6
\[\forall w_1, \ldots, w_{2r} \left(\left(\bigwedge_{i=1}^{r} w_i = w_{r+i} \right) \rightarrow t(w_1, w_2, \ldots, w_r) = t(w_{r+1}, w_{r+2}, \ldots, w_{2r}) \right) \]

for \(t(x_1, x_2, \ldots, x_r) \in TL \).

Eq7
\[\forall w_1, \ldots, w_{2r} \left(\left(\bigwedge_{i=1}^{r} w_i = w_{r+i} \right) \rightarrow (\theta(w_1, w_2, \ldots, w_r) \leftrightarrow \theta(w_{r+1}, w_{r+2}, \ldots, w_{2r})) \right) \]

for \(\theta(x_1, x_2, \ldots, x_r) \in FL \).