The Problems

1. Give formal proofs of
 (i) \(\forall w_1 \neg (P(w_1) \lor Q(w_1)) \vdash \forall w_1 \neg P(w_1) \)
 (ii) \(\forall w_1 \exists w_2 P(w_2) \vdash \exists w_2 \forall w_1 P(w_1) \)
where \(P, Q \) are unary relation symbols.

2. Show that if \(f \) is a unary function symbol of \(L \) which does not occur in \(\theta(x_1) \in FL \) and \(\models \forall w_1 \theta(f(w_1)) \) then \(\models \forall w_1 \theta(w_1) \).

[To simplify the notation (and in line with our convention) you may assume that \(x_1 \) is the only free variable appearing in \(\theta(x_1) \).]

The Solutions

1.(i) A formal proof of \(\forall w_1 \neg (P(w_1) \lor Q(w_1)) \vdash \forall w_1 \neg P(w_1) \)

 1 \(P(x_1), \forall w_1 \neg (P(w_1) \lor Q(w_1)) \mid \forall w_1 \neg (P(w_1) \lor Q(w_1)) \) \text{ REF}
 2 \(P(x_1), \forall w_1 \neg (P(w_1) \lor Q(w_1)) \mid \neg (P(x_1) \lor Q(x_1)) \) \text{ \forall O, 1}
 3 \(P(x_1), \forall w_1 \neg (P(w_1) \lor Q(w_1)) \mid P(x_1) \) \text{ REF}
 4 \(P(x_1), \forall w_1 \neg (P(w_1) \lor Q(w_1)) \mid P(x_1) \lor Q(x_1) \) \text{ ORR, 3}
 5 \(\forall w_1 \neg (P(w_1) \lor Q(w_1)) \mid \neg P(x_1) \) \text{ NIN, 2, 4}
 6 \(\forall w_1 \neg (P(w_1) \lor Q(w_1)) \mid \forall w_1 \neg P(w_1) \) \text{ \forall I, 5}

(ii) A formal proof of \(\forall w_1 \exists w_2 P(w_2) \vdash \exists w_2 \forall w_1 P(w_2) \)

 1 \(\forall w_1 \exists w_2 P(w_2) \mid \forall w_1 \exists w_2 P(w_2) \) \text{ REF}
 2 \(\forall w_1 \exists w_2 P(w_2) \mid \exists w_2 P(w_2) \) \text{ \forall O, 1}
 3 \(P(x_1) \mid P(x_1) \) \text{ REF}
 4 \(P(x_1) \mid \forall w_1 P(x_1) \) \text{ \forall I, 3}
 5 \(P(x_1) \mid \exists w_2 \forall w_1 P(w_2) \) \text{ \exists I, 4}
 6 \(\exists w_2 P(w_2) \mid \exists w_2 \forall w_1 P(w_2) \) \text{ \exists O, 5}
 7 \(\mid \exists w_2 P(w_2) \rightarrow \exists w_2 \forall w_1 P(w_2) \) \text{ IMR, 6}
 8 \(\forall w_1 \exists w_2 P(w_2) \mid \exists w_2 \forall w_1 P(w_2) \) \text{ MP, 2, 7}

2. Let \(M \) be a structure for \(L \) and \(a \in |M| \). Let \(K \) be the structure for \(L \) which completely agrees with \(M \) except that \(f^K(a) = a \). Then since \(\theta(x_1) \) does not mention \(f \), \(M \) and \(K \) must be exactly the same on the relation, constant, function symbols appearing in \(\theta(x_1) \), so

\[K \models \theta(a) \iff M \models \theta(a). \] \hspace{1cm} (1)

\(^1\)Only for levels 4&6 students.
[This is clear but in any case it is easily proved by induction on the length of formulae, see Example 28 on the Example Sheet.]
.
\[\therefore \text{given that } | \forall w_1 \theta(f(w_1)), K \models \theta(f(a)), \text{ so by Lemma 16}^* \text{ (or take it as obvious) } K \models \theta(f^K(a)), \text{ i.e. } K \models \theta(a). \therefore \text{by (1), } M \models \theta(a), \text{ so since } a \text{ was an arbitrary element of } |M|, M \models \forall w_1 \theta(w_1). \text{ Finally then since } M \text{ was an arbitrary structure for } L, \models \forall w_1 \theta(w_1). \]

The Feedback

Generally the MATH33001 students did very well, the average mark was close to 9. Strangely the MATH43001/63001 students on average didn’t perform well at all, even on question 1 which was common to both tests, their average mark being around 5.

An error on Question 1(i) was to invent new rules which weren’t on the list – no way is this permitted. For example going from \(| \neg (P(x_1) \lor Q(x_1)) \) to \(| \neg P(x_1) \land \neg Q(x_1) \) by the ‘rule of logical equivalence’!

Amongst those students who did not get Question 2 correct a common error was to incorrectly apply the rule MP as in:

\[
\begin{align*}
n &. \quad \Gamma, \forall w_1 P(w_1) | \forall w_1 P(w_1) \\
n + 1 &. \quad \Gamma, \forall w_1 P(w_1) | P(x_1) \quad \forall O \quad n \\
n + 2 &. \quad \Gamma | \forall w_1 P(w_1) \rightarrow P(x_1) \quad \text{IMR} \quad n + 1 \\
n + 3 &. \quad \Gamma | P(x_1) \quad \text{MP; } n, n + 2
\end{align*}
\]

The error was that on line \(n + 3 \) the \(\forall w_1 P(w_1) \) on the left hand side of line \(n \) should now reappear on the left of line \(n + 3 \). It should have been obvious that there was something wrong here since for \(\Gamma = \emptyset \) here we could in this way prove any \(P(x_1) \) from no assumptions at all. Indeed it is always a good idea as you’re producing a proof to check at each stage that you think it reasonable that the rhs does follow from the lhs. [Similarly you should always be suspicious at the end of a proof if you never actually used one of the given lhs assumptions!]

As expected a mistake some students made on this question was to apply the \(\exists O \) rule using a variable which also appeared on the rhs. This can often be avoided by arranging the order in which you use the quantifier rules so that at the stage when \(\exists O \) is applied the free variable in question has already been removed from the rhs (usually by an application of \(\exists I \), see the model answer).

Question 2 for the level 4 & 6 students was not well done, almost nobody saw why it held. I can only suggest you look at the model answer.