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Context and Notation

Lq is the first order language with

• Constant symbols an, n ∈ N
+ = {1, 2, 3, . . .}

• Predicate (i.e. unary relation) symbols R1, R2, . . . , Rq.

SLq, QFSLq denote the sentences and quantifier free sentences of Lq.

Let M be a structure for Lq with universe the interpretations of the an (also denoted
an).

Question: Given an agent A inhabiting M and θ ∈ SLq what probability
w(θ) should A rationally, or logically, assign to θ?

Very Important Condition here: A knows nothing about M , s/he has no partic-
ular interpretation in mind for the constants and predicates.

More precisely:

Question: Given an agent A inhabiting M , rationally or logically, what
probability function w should A adopt?

Here w : SLq → [0, 1] is a probability function on Lq if for all θ, φ, ∃xψ(x) ∈ SLq

(P1) � θ ⇒ w(θ) = 1.

(P2) θ � ¬φ ⇒ w(θ ∨ φ) = w(θ) + w(φ).

(P3) w(∃xψ(x)) = limn→∞w(ψ(a1) ∨ ψ(a2) ∨ . . . ∨ ψ(an)).



Proposition 1 Let w be a probability function on SL. Then for θ, φ ∈ SL,

(a) w(¬θ) = 1− w(θ).

(b) � ¬θ ⇒ w(θ) = 0.

(c) θ � φ ⇒ w(θ) ≤ w(φ).

(d) θ ≡ φ ⇒ w(θ) = w(φ).

(e) w(θ ∨ φ) = w(θ) + w(φ)− w(θ ∧ φ).

For φ ∈ SLq the corresponding conditional probability function w(− | φ) is a proba-
bility function such that for θ ∈ SLq,

w(θ | φ) · w(φ) = w(θ ∧ φ), i.e. w(θ | φ) =
w(θ ∧ φ)

w(φ)
if w(φ) > 0.

Specifying Probability Functions

Gaifman’s Theorem 2 Suppose that w : QFSLq → [0, 1] satisfies (P1) and (P2)
for θ, φ ∈ QFSLq. Then w has a unique extension to a probability function on Lq

satisfying (P1),(P2),(P3) for any θ, φ, ∃xψ(x) ∈ SLq.

Example

Let α1, . . . , α2q , the atoms of Lq, denote the 2q formulae of the form

Rǫ1
1 (x) ∧ R

ǫ2
2 (x) ∧ . . . ∧R

ǫn
q (x)

where the ǫi ∈ {0, 1} and R1 = R,R0 = ¬R.

Let

~c ∈ D2q = {〈x1, x2, . . . , x2q〉 | xi ≥ 0,
2q
∑

i=1

xi = 1}

Define w~c on (instantiations) of atoms by

w~c(αj(ai)) = cj, j = 1, 2, . . . , 2q,

Extend w~c to state descriptions, that is conjunctions of atoms, by setting, for b1, b2, . . . , bn
distinct elements of {ak | k ∈ N

+},

w~c(αh1
(b1) ∧ αh2

(b2) ∧ . . . ∧ αhn
(bn))

= w~c(αh1
(b1))× w~c(αh2

(b2))× . . .× w~c(αhn
(bn)))

= ch1
× ch2

× . . .× chn

=
n
∏

j=1

chj
.

By the Disjunctive Normal Form Theorem, for θ(b1, b2, . . . , bn) ∈ QFSLq

θ(b1, b2, . . . , bn) ≡

r
∨

k=1

n
∧

i=1

αhik
(bi)



for some hik.

Set

w~c(θ(b1, . . . , bn) = w~c

(

r
∨

k=1

n
∧

i=1

αhik
(bi)

)

=
r
∑

k=1

w~c

(

n
∧

i=1

αhik
(bi)

)

=
r
∑

k=1

n
∏

i=1

w~c(αhik
(bi))

=

r
∑

k=1

n
∏

i=1

chik
.

By Gaifman’s Theorem w~c extends to a probability function on Lq.

Rational Principles

Sources:

• Symmetry

• Irrelevance

• Relevance

• Analogy

The Constant Exchangeability Principle Ex

For θ(a1, a2, . . . , an) ∈ SLq and (distinct) ai1 , ai2 , . . . , ain

w(θ(a1, a2, . . . , an)) = w(θ(ai1, ai2 , . . . , ain)).

The w~c satisfy Ex.

de Finetti’s Representation Theorem 3 A probability function w on the lan-
guage Lq satisfies Ex just if it is a mixture of the w~c.

More precisely, just if

w =

∫

w~x dµ(~x)

where µ is a normalized countably additive measure on the Borel subsets of

D2q = {〈x1, x2, . . . , x2q〉 | 0 ≤ x1, x2, . . . , x2q ,
∑

i

xi = 1}.



Theorem 4 Ex implies the:

Principle of Instantial Relevance, PIR:

For θ(a1, a2, . . . , an) ∈ SLq,

w(αi(an+2) |αi(an+1) ∧ θ(a1, a2, . . . , an)) ≥ w(αi(an+1) | θ(a1, a2, . . . , an)). (1)

Proof Let the probability function w on L satisfy Ex.

Without loss of generality let αi(x) = α1(x) and, for simplicity,

θ(a1, . . . , an) ≡
r
∨

k=1

n
∧

i=1

αhik
(ai).

Then for µ the de Finetti prior for w,

w(θ(a1, . . . , an)) =

∫

D2q

w~x(θ(a1, . . . , an)) dµ(~x) =

∫

D2q

r
∑

k=1

n
∏

i=1

xhik
dµ(~x) = A say,

w(α1(an+1) ∧ θ(a1, . . . , an)) =

∫

D2q

x1

r
∑

k=1

n
∏

i=1

xhik
dµ(~x),

w(α1(an+2) ∧ α1(an+1) ∧ θ(a1, . . . , an)) =

∫

D2q

x21

r
∑

k=1

n
∏

i=1

xhik
dµ(~x)

and (1) amounts to
(

∫

D2q

x1

r
∑

k=1

n
∏

i=1

xhik
dµ(~x)

)2

≤

(

∫

D2q

r
∑

k=1

n
∏

i=1

xhik
dµ(~x)

)

·

(

∫

D2q

x21

r
∑

k=1

n
∏

i=1

xhik
dµ(~x)

)

. (2)

If A = 0 then this clearly holds, so assume that A 6= 0.

Then multiplying out

0 ≤

∫

D2q

(

x1A−

∫

D2q

x1

r
∑

k=1

n
∏

i=1

xhik
dµ(~x)

)2 r
∑

k=1

n
∏

i=1

xhik
dµ(~x). (3)

and dividing by A2 gives (2), and the result follows. �

The Extended Principle of Instantial Relevance, EPIR

For θ(a1, a2, . . . , an), φ(an+1) ∈ SLq,

w(φ(an+2) | φ(an+1) ∧ θ(a1, a2, . . . , an)) ≥ w(φ(an+1) | θ(a1, a2, . . . , an)).

Principle of Predicate Exchangeability, Px

For φ(R1, R2, . . . , Rm) ∈ SLq, where we explicitly display the predicate symbols occur-
ring in φ, and (distinct) 1 ≤ i1, i2, . . . , im ≤ q,

w(φ(R1, R2, . . . , Rm)) = w(φ(Ri1, Ri2, . . . , Rim)).



The w~c do not satisfy Px in general.

Unary Language Invariance, ULi

A probability function w on Lq satisfies Unary Language Invariance if there is a family
of probability functions wr, one on each language Lr for r ∈ N

+, such that w = wq,
each member of this family satisfies Px and whenever p ≤ r then wr ↾SLp = wp.

Principles of Analogy

Counterpart Principle, CP

For any θ ∈ SLq, if θ
′ ∈ SLq is obtained by replacing some of the predicate and

constant symbols appearing in θ by (distinct) new ones not occurring in θ and ψ ∈ SLq

only mentions constant and predicate symbols common to both θ and θ′ then

w(θ | θ′ ∧ ψ ) ≥ w(θ |ψ).

CP is analogical support by structural similarity

Theorem 5 Let the probability function w on Lq satisfy ULi. Then w satisfies the
Counterpart Principle, CP.

Proof We may assume that w(ψ) > 0.

Let the ULi family consist of wr on Lr for r ∈ N
+.

Then

w∞ =

∞
⋃

r=1

wr

is a probability function on the infinite (unary) language L∞ = {R1, R2, R3, . . .}
extending w and satisfying Ex and Px.

Let θ, θ′, ψ be as in the statement of CP.

We may assume that all the constant and predicate symbols appearing in θ which are
common to θ′ are amongst a1, a2, . . . , an, R1, R2, . . . , Rg, and that the replacements
are an+i 7→ an+i+k for i = 1, . . . , k and Rg+j 7→ Rg+j+t for j = 1, . . . , t.

Suppressing these common constant and predicate symbols we can write

θ = θ(an+1, an+2, . . . , an+k, Rg+1, Rg+2, . . . , Rg+t),

θ′ = θ(an+k+1, an+k+2, . . . , an+2k, Rg+t+1, Rg+t+2, . . . , Rg+2t).

Let

θi+1 = θ(an+ik+1, an+ik+2, . . . , an+(i+1)k, Rg+it+1, Rg+it+2, . . . , Rg+(i+1)t) ∈ SL∞

so θ1 = θ, θ2 = θ′.

Define τ : QFSL1 → SL∞ by



τ(R1(ai)) = θi, τ(¬φ) = ¬τ(φ), τ(φ ∧ η) = τ(φ) ∧ τ(η), etc.

Define v : QFSL1 → [0, 1] by

v(φ) = w∞(τ(φ) |ψ).

Since w∞ satisfies (P1-2) (on SL∞) so does v (on QFSL1).

Since w∞ satisfies Ex + Px, for φ ∈ QFSL1, permuting the θi in w(τ(φ) |ψ) will
leave this value unchanged so permuting the ai in φ will leave v(φ) unchanged. i.e. v
satisfies Ex.

By Gaifman’s Theorem v has an extension to a probability function on L1 which still
satisfies Ex.

Hence v satisfies PIR by Theorem 4, so

v(R1(a1) |R1(a2)) ≥ v(R1(a1)).

But since τ(R1(a1)) = θ, τ(R1(a2)) = θ′ this gives

w∞(θ | θ′ ∧ ψ) ≥ w∞(θ |ψ)

and

w(θ | θ′ ∧ ψ) ≥ w(θ |ψ)

�

With the above notation we can also show that

w(θn+1 |
m
∧

i=1

θi ∧
n
∧

j=m+1

¬θj) ≥ w(θn+1 |
k
∧

i=1

θi ∧
n
∧

j=k+1

¬θj)

whenever m ≥ k.

Theorem 6 Let the probability function w on Lq satisfy ULi and let

θ = θ(~a1, ~a2, ~a3, ~R1, ~R2, ~R3)

θ′ = θ(~a1, ~a2, ~a4, ~R1, ~R2, ~R4)

θ′′ = θ(~a1, ~a5, ~a6, ~R1, ~R5, ~R6)

and ψ = ψ(~a1, ~R1) where the ~ai, ~Rj are all disjoint. Then

w(θ | θ′ ∧ ψ) ≥ w(θ | θ′′ ∧ ψ).

A Failed Attempt

For atoms αi(x) =
∧q

n=1R
ǫn
n (x), αj(x) =

∧q

n=1R
δn
n (x), where the ǫn, δn ∈ {0, 1} and

R1 = R,R0 = ¬R,

|αi − αj | =

q
∑

n=1

|ǫn − δn|

= the number of conjuncts Rn on which αi, αj differ.



Principle of Analogical Support by Distance:

If θ(a1, . . . , an) ∈ QFSLq and

|αi − αj | < |αi − αk|

then

w(αi(an+2) |αj(an+1) ∧ θ(a1, . . . , an)) ≥ w(αi(an+2) |αk(an+1) ∧ θ(a1, . . . , an)).

Unfortunately the only solutions, even for q = 2, are hardly ‘rational’.


