The Matrix Exponential

For $A \in \mathbb{C}^{n \times n}$,

$$e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots.$$

Difficulties in computing e^x noted by Stegun & Abramowitz (1956). They suggested $e^x = (e^{x/n})^n$, $|x/n| < 1$.

Moler & Van Loan:

Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003).

- 355 citations on Science Citation Index.
Application: Control Theory

Convert **continuous-time system**

\[
\frac{dx}{dt} = Fx(t) + Gu(t),
\]
\[y = Hx(t) + Ju(t),\]

to **discrete-time state-space system**

\[
x_{k+1} = Ax_k + Bu_k,
\]
\[y_k = Hx_k + Ju_k.\]

Have

\[
A = e^{F\tau}, \quad B = \left(\int_0^\tau e^{Ft} dt\right) G,
\]

where \(\tau\) is the sampling period.

MATLAB Control System Toolbox: `c2d` and `d2c`.
Application: Differential Equations

Nuclear magnetic resonance: Solomon equations

\[
dM/dt = -RM, \quad M(0) = I,
\]

where \(M(t) \) = matrix of intensities and \(R \) = symmetric relaxation matrix. NMR workers need to solve both forward and inverse problems.

Exponential time differencing for stiff systems (Cox & Matthews, 2002; Kassam & Trefethen, 2003)

\[
y' = Ay + F(y, t).
\]

Methods based on exact integration of linear part—require one accurate evaluation of \(e^{hA} \) and \(e^{hA/2} \) per integration.
Whenever there is too much talk of applications, one can rest assured that the theory has very few of them.

— GIAN-CARLO ROTA, Indiscrete Thoughts (1997)
Scaling and Squaring Method

To compute $X \approx e^A$:

1. $A \leftarrow A/2^s$ so $\|A\|_\infty \approx 1$
2. $r_m(A) = \lfloor m/m \rfloor$ Padé approximant to e^A
3. $X = r_m(A)^{2^s}$

- Originates with Lawson (1967).
- Moler & Van Loan (1978): give backward error analysis covering truncation error in Padé approximations, allowing choice of s and m.

Matrix exponential – p. 6/27
Padé Approximations r_m to e^x

$r_m(x) = p_m(x)/q_m(x)$ known explicitly:

$$p_m(x) = \sum_{j=0}^{m} \frac{(2m - j)!m!}{(2m)! (m - j)! j!} x^j$$

and $q_m(x) = p_m(-x)$. The error satisfies

$$e^x - r_m(x) = (-1)^m \frac{(m!)^2}{(2m)!(2m + 1)!} x^{2m+1} + O(x^{2m+2}).$$
Moler & Van Loan (1978) show that if $\|A/2^s\| \leq 1/2$ then

$$r_m(A/2^s)^{2^s} = e^{A+E},$$

where $AE = EA$ and

$$\frac{\|E\|}{\|A\|} \leq 2^{3-2m} \frac{(m!)^2}{(2m)!(2m+1)!}.$$

\quad (*)

- For $m = 6$, the bound is 3.4×10^{-16}.
- MATLAB’s `expm` takes s so that $\|A/2^s\| \leq 1/2$ and $m = 6$.
Choice of Scaling and Padé Degree

Moler & Van Loan (1978) show that if \(\|A/2^s\| \leq 1/2 \) then

\[
rm(A/2^s)^{2^s} = e^{A+E},
\]

where \(AE = EA \) and

\[
\frac{\|E\|}{\|A\|} \leq 2^{3-2m} \frac{(m!)^2}{(2m)!(2m + 1)!}.
\]

\((\ast)\)

- For \(m = 6 \), the bound is \(3.4 \times 10^{-16} \).
- MATLAB’s \texttt{expm} takes \(s \) so that \(\|A/2^s\| \leq 1/2 \) and \(m = 6 \).

- Why restrict to \(\|A/2^s\| \leq 1/2 \)?
- Bound \((\ast)\) is far from sharp.
Analysis

Let

\[e^{-A} r_m(A) = I + G = e^H \]

and assume \(\|G\| < 1 \). Then

\[\|H\| = \| \log(I + G) \| \leq \sum_{j=1}^{\infty} \|G\|^j / j = -\log(1 - \|G\|). \]

Hence

\[r_m(A) = e^A e^H = e^{A+H}. \]

Rewrite as

\[r_m(A/2^s)^{2^s} = e^{A+E}, \]

where \(E = 2^s H \) satisfies

\[\|E\| \leq -2^s \log(1 - \|G\|). \]
Result

Theorem 1 Let

\[e^{-2^{-s}A} r_m(2^{-s}A) = I + G, \]

where \(\|G\| < 1 \). Then the diagonal Padé approximant \(r_m \) satisfies

\[r_m(2^{-s}A)^{2^s} = e^{A+E}, \]

where

\[\frac{\|E\|}{\|A\|} \leq \frac{-\log(1 - \|G\|)}{\|2^{-s}A\|}. \]

Remains to bound \(\|G\| \) in terms of \(\|2^{-s}A\| \).
Bounding $\|G\|$

$$\rho(x) := e^{-x} r_m(x) - 1 = \sum_{i=2m+1}^{\infty} c_i x^i$$

converges absolutely for $|x| < \min\{ |t| : q_m(t) = 0 \} =: \nu_m$.

Hence, with $\theta := \|2^{-s} A\| < \nu_m$,

$$\|G\| = \|\rho(2^{-s} A)\| \leq \sum_{i=2m+1}^{\infty} |c_i| \theta^i =: f(\theta). \quad (\ast)$$

Thus $\|E\|/\|A\| \leq -\log(1 - f(\theta))/\theta)$.

- If only $\|A\|$ known, (\ast) is optimal bound on $\|G\|$.
Finding Largest θ

To obtain

$$f(\theta) = \sum_{i=2m+1}^{\infty} |c_i| \theta^i,$$

compute c_i symbolically, sum series in 250 digit arithmetic.

Use zero-finder to determine largest θ, denoted θ_m, such that b’err bound $\leq u = 2^{-53} \approx 1.1 \times 10^{-16}$ (IEEE double).

<table>
<thead>
<tr>
<th>m</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_m</td>
<td>3.7e-8</td>
<td>5.3e-4</td>
<td>1.5e-2</td>
<td>8.5e-2</td>
<td>2.5e-1</td>
<td>5.4e-1</td>
<td>9.5e-1</td>
<td>1.5e0</td>
<td>2.1e0</td>
<td>2.8e0</td>
</tr>
<tr>
<td>m</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>θ_m</td>
<td>3.6e0</td>
<td>4.5e0</td>
<td>5.4e0</td>
<td>6.3e0</td>
<td>7.3e0</td>
<td>8.4e0</td>
<td>9.4e0</td>
<td>1.1e1</td>
<td>1.2e1</td>
<td>1.3e1</td>
</tr>
</tbody>
</table>
Computational Cost

Efficient scheme for \(r_8 \):

\[
p_8(A) = b_8 A^8 + b_6 A^6 + b_4 A^4 + b_2 A^2 + b_0 I \\
+ A(b_7 A^6 + b_5 A^4 + b_3 A^2 + b_1 I) \\
=: U + V.
\]

Then \(q_8(A) = U - V \).

For \(m \geq 12 \) a different scheme is more efficient.

Number of mat mults \(\pi_m \) to evaluate \(r_m \):

\[
\begin{array}{cccccccccc}
 m & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
 \pi_m & 0 & 1 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
 m & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline
 \pi_m & 6 & 6 & 6 & 7 & 7 & 7 & 7 & 8 & 8 & 8 \\
\end{array}
\]
Optimal Algorithm

Recall $A \leftarrow 2^{-s}A$, $s = \lceil \log_2 \|A\| / \theta_m \rceil$ if $\|A\| \geq \theta_m$, else $s = 0$. Hence cost of overall algorithm in mat mults is

$$\pi_m + s = \pi_m + \max \left(\lceil \log_2 \|A\| - \log_2 \theta_m \rceil, 0 \right).$$

For $\|A\| \geq \theta_m$ simplify to

$$C_m = \pi_m - \log_2 \theta_m.$$
Optimal Algorithm

Recall $A \leftarrow 2^{-s} A$, $s = \lceil \log_2 \|A\|/\theta_m \rceil$ if $\|A\| \geq \theta_m$, else $s = 0$. Hence cost of overall algorithm in mat mults is

$$\pi_m + s = \pi_m + \max \left(\lceil \log_2 \|A\| - \log_2 \theta_m \rceil, 0 \right).$$

For $\|A\| \geq \theta_m$ simplify to $C_m = \pi_m - \log_2 \theta_m$.

\[
\begin{array}{|c|cccccccccc|}
\hline
m & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
C_m & 25 & 12 & 8.1 & 6.6 & 5.0 & 4.9 & 4.1 & 4.4 & 3.9 & 4.5 \\
\hline
m & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline
C_m & 4.2 & 3.8 & 3.6 & 4.3 & 4.1 & 3.9 & 3.8 & 4.6 & 4.5 & 4.3 \\
\hline
\end{array}
\]

- For IEEE single, $m = 7$ is optimal.
- For quad prec., $m = 17$ is optimal.
Can show, improving Ward (1977) bounds,

\[\|p_m(A) - \hat{p}_m(A)\|_1 \lesssim \gamma_{mn} \|p_m(A)\|_1 e^{\theta_m} \]

(ditto for \(q_m \))

and

\[\|q_m(A)^{-1}\| \leq \frac{e^{\theta_m/2}}{1 - \sum_{i=2}^{\infty} |d_i|\theta_i m} =: \xi_m, \]

where \(e^{x/2}q_m(x) - 1 = \sum_{i=2}^{\infty} d_i x^i \).

<table>
<thead>
<tr>
<th>(m)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi_m)</td>
<td>1.0e0</td>
<td>1.0e0</td>
<td>1.0e0</td>
<td>1.0e0</td>
<td>1.1e0</td>
<td>1.3e0</td>
<td>1.6e0</td>
<td>2.1e0</td>
<td>3.0e0</td>
<td>4.3e0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(m)</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi_m)</td>
<td>6.6e0</td>
<td>1.0e1</td>
<td>1.7e1</td>
<td>3.0e1</td>
<td>5.3e1</td>
<td>9.8e1</td>
<td>1.9e2</td>
<td>3.8e2</td>
<td>8.3e2</td>
<td>2.0e3</td>
</tr>
</tbody>
</table>
Algorithm

Algorithm 1 \texttt{Evaluate } e^A, \texttt{ for } A \in \mathbb{C}^{n \times n}, \texttt{ using the scaling and squaring method.}

for $m = [3 \ 5 \ 7 \ 9 \ 13]$
 if $\|A\|_1 \leq \theta_m$
 $X = r_m(A)$, return
 end
end

$A \leftarrow A/2^s$ with s min integer s.t. $\|A/2^s\|_1 \leq \theta_{13} \approx 5.4$

$s = \lceil \log_2(\|A\|_1/\theta_{13}) \rceil$

$X = r_{13}(A)$ \texttt{[increasing ordering]}

$X \leftarrow X^{2^s}$ by repeated squaring

\texttt{May want to add preprocessing to reduce the norm.}
Comparison with Existing Algorithms

<table>
<thead>
<tr>
<th>Method</th>
<th>m</th>
<th>$\max |2^{-s} A|$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alg 1</td>
<td>13</td>
<td>5.4</td>
</tr>
<tr>
<td>Ward (1977)</td>
<td>8</td>
<td>1.0</td>
</tr>
<tr>
<td>MATLAB 7’s expm</td>
<td>6</td>
<td>0.5</td>
</tr>
<tr>
<td>Sidje (1998)</td>
<td>6</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Comparison with Existing Algorithms

<table>
<thead>
<tr>
<th>Method</th>
<th>(m)</th>
<th>max (|2^{-s}A|)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alg 1</td>
<td>13</td>
<td>5.4</td>
</tr>
<tr>
<td>Ward (1977)</td>
<td>8</td>
<td>1.0</td>
</tr>
<tr>
<td>MATLAB 7’s expm</td>
<td>6</td>
<td>0.5</td>
</tr>
<tr>
<td>Sidje (1998)</td>
<td>6</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\(\theta_8 = 1.5 \) \quad \theta_6 = 0.54

- \(\|A\|_1 > 1 \): Alg 1 requires 1–2 fewer mat mults than Ward, 2–3 fewer than expm.

\[\|A\|_1 \in (2, 2.1) \]:

<table>
<thead>
<tr>
<th></th>
<th>Alg 1</th>
<th>Ward</th>
<th>expm</th>
<th>Sidje</th>
</tr>
</thead>
<tbody>
<tr>
<td>mults</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

- \(\|A\|_1 \leq 1 \): Alg 1 requires up to 3 fewer, and no more, mat mults than expm and Ward.
Squaring Phase

The bound

$$\|A^2 - fl(A^2)\| \leq \gamma_n \|A\|^2, \quad \gamma_n = \frac{nu}{1 - nu}.$$

shows the dangers in matrix squaring.

Open question: are errors in squaring phase consistent with conditioning of the problem?

Our choice of parameters uses 1–5 fewer matrix squarings than existing implementations, hence has potential accuracy advantages.
Numerical Experiment

- 66 8×8 test matrices: 53 from the function `matrix` in Matrix Computation Toolbox and 13 of dimension 2–10 from e^A literature.
- Evaluated 1-norm relative error.
- Used Alg 1 and modified version with max Padé degree a parameter, m_{max}, denoted $\text{Exp}(m_{\text{max}})$.
- Notation:
 - `expm`: MATLAB 7 scaling & squaring ($m = 6$).
 - `funm`: MATLAB 7 Schur–Parlett function.
 - `padm`: Sidje ($m = 6$).
- $\text{cond}(A) = \lim_{\epsilon \to 0} \max_{\|E\|_2 \leq \epsilon \|A\|_2} \frac{\|e^{A+E} - e^A\|_2}{\epsilon \|e^A\|_2}$.

Matrix exponential – p. 19/27
Different m_{max}
Different S&S Codes and \textit{funm}

Matrix exponential – p. 21/27

- Let $t_s(p)$ measure cost or accuracy of solver $s \in S$ on problem $p \in P$.

- Performance ratio

 $$r_{p,s} := \frac{t_s(p)}{\min\{t_\sigma(p) : \sigma \in S\}} \geq 1.$$

- Plot α against

 $$P(r_{p,s} \leq \alpha \text{ for all } s).$$
Najfeld & Havel (1995) suggest using Padé approximant to

\[
\tau(x) = x \coth(x) = x(e^{2x} + 1)(e^{2x} - 1)^{-1}
\]

\[
= 1 + \frac{x^2}{3 + \frac{x^2}{5 + \frac{x^2}{7 + \cdots}}},
\]

for which

\[
e^{2x} = \frac{\tau(x) + x}{\tau(x) - x}.
\]

For example, \([2m/2m]\) Padé approximant to \(\tau\) is

\[
\tilde{r}_8(x) = \frac{\frac{1}{765765}x^8 + \frac{4}{9945}x^6 + \frac{7}{255}x^4 + \frac{8}{17}x^2 + 1}{\frac{1}{34459425}x^8 + \frac{2}{69615}x^6 + \frac{1}{255}x^4 + \frac{7}{51}x^2 + 1}.
\]
Najfeld & Havel Algorithm

Error in r_{2m} has form

$$\tau(x) - \tilde{r}_{2m}(x) = \sum_{k=1}^{\infty} d_k x^{4m+2k} = \sum_{k=1}^{\infty} d_k (x^2)^{2m+k}$$

$$\Rightarrow \|\tau(A) - \tilde{r}_{2m}(A)\| \leq \sum_{k=1}^{\infty} d_k \|A^2\|^{2m+k} =: \omega_{2m}(\|A^2\|).$$

Let θ_{2m} be largest θ such that $\omega_{2m}(\theta) \leq u$.

- $\tilde{A} \leftarrow A/2^{s+1}$ with $s \geq 0$ s.t. $\|\tilde{A}^2\| = \|A^2\|/2^{2s+2} \leq \theta_{2m}$.
- Evaluate $\tilde{r}_{2m}(\tilde{A})$ then $(\tilde{r}_{2m} + \tilde{A})(\tilde{r}_{2m} - \tilde{A})^{-1}$.
- Square result s times.
- $m = 8$ leads to most efficient algorithm.
Equivalence

Theorem 2 The \([2m/2m]\) Padé approximant \(\tilde{r}_{2m}(x)\) to
x \coth(x) is related to the \([2m + 1/2m + 1]\) Padé approximant
\(r_{2m+1}(x)\) to \(e^x\) by

\[
r_{2m+1}(x) = \frac{\tilde{r}_{2m}(x/2) + x/2}{\tilde{r}_{2m}(x/2) - x/2}.
\]

- N & H alg \((m = 8)\) implicitly uses same Padé approximant to \(e^x\) as Alg 1 with \(m = 9\).
- N & H derivation bounds error \(\|\tau(A) - \tilde{r}_{2m}(A)\|\) for scaled \(A\). What does this imply about \(\|e^{2A} - (\tilde{r}_{2m} + A)(\tilde{r}_{2m} - A)^{-1}\|\)?
- \(\tilde{r}_{2m} - A\) can be arbitrarily ill conditioned.
- No backward error bound analogous to that for Alg 1.
Conclusions

★ New scaling & squaring implementation up to 1.6 times faster than \texttt{expm} and significantly more accurate.

★ Improvement comes by replacing mathematically elegant error bound by sharper bound, which is evaluated symbolically/numerically.

★ High degree Padé approximants are numerically viable. (Error analysis guarantees stable evaluation.)

★ Another example where faster \Rightarrow more accurate!

★ No example of instability of new alg seen in the tests. Open question: Is S&S method stable?

★ Performance profiles—a useful tool in numerical linear algebra, not just optimization.