Optimal Control with Partial Information for Stochastic Volterra Equations

Bernt Øksendal & Tusheng Zhang

First version: 15 December 2009

School of Mathematics, The University of Manchester
Optimal control with partial information for stochastic Volterra equations

Bernt Øksendal1,3, Tusheng Zhang2

December 15, 2009

Abstract

In the first part of the paper, we obtain existence and characterizations of an optimal control for a linear quadratic control problem of linear stochastic Volterra equations. In the second part, using the Malliavin calculus approach, we deduce a general maximum principle for optimal control of general stochastic Volterra equations. The result is applied to solve some stochastic control problem for some stochastic delay equations.

AMS Subject Classification: Primary 60H15 Secondary 93E20, 35R60.

1 Introduction

Let $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ be a filtered probability space and $B(t), t \geq 0$ a \mathcal{F}_t- real valued Brownian motion. Let $R_0 = R \setminus \{0\}$ and $\nu(dz)$ a σ-finite measure on $(R_0, B(R_0))$. Let $N(dt, dz)$ denote a stationary Poisson random measure on $R_+ \times R_0$ with intensity measure $d\nu(dz)$. Denote by $\tilde{N}(dt, dz) = N(dt, dz) - dt\nu(dz)$ the compensated Poisson measure. Suppose we have a cash flow where the amount $X(t)$ at time t is modelled by a stochastic delay equation of the form:

$$dX(t) = \{A_1(t)X(t) + A_2(t)X(t-h) + \int_{t-h}^t A_0(t,s)X(s)ds\}dt$$

$$+ C_1(t)dB(t) + \int_{R_0} C_2(t,z)\tilde{N}(dt,dz); \ t \geq 0$$

$$X(t) = \eta(t); \ t \in [-h,0].$$

Here $h > 0$ is a fixed delay and $A_1(t), A_2(t), A_0(t,s), C_1(t), C_2(t,z), \eta$ are given bounded deterministic functions.

1 CMA and Department of Mathematics, University of Oslo, P. O. Box 1053 Blindern, N 0316 Oslo, Norway. Email: oksendal@math.uio.no

2 CMA and Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, England, U.K. Email: tzhang@maths.man.ac.uk

3 Norwegian School of Economics and Business Administration (NHH), Helleveien 30, N-5045 Bergen, Norway